# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import cv2 import math import random import functools try: import cPickle as pickle from cStringIO import StringIO except ImportError: import pickle from io import BytesIO import numpy as np import paddle from PIL import Image, ImageEnhance import logging logger = logging.getLogger(__name__) python_ver = sys.version_info class KineticsReader(): """ Data reader for kinetics dataset of two format mp4 and pkl. 1. mp4, the original format of kinetics400 2. pkl, the mp4 was decoded previously and stored as pkl In both case, load the data, and then get the frame data in the form of numpy and label as an integer. dataset cfg: format num_classes seg_num short_size target_size num_reader_threads buf_size image_mean image_std batch_size list """ def __init__(self, mode, cfg): self.mode = mode self.format = cfg.MODEL.format self.num_classes = cfg.MODEL.num_classes self.seg_num = cfg.MODEL.seg_num self.seglen = cfg.MODEL.seglen self.short_size = cfg[mode.upper()]['short_size'] self.target_size = cfg[mode.upper()]['target_size'] self.num_reader_threads = cfg[mode.upper()]['num_reader_threads'] self.buf_size = cfg[mode.upper()]['buf_size'] self.img_mean = np.array(cfg.MODEL.image_mean).reshape( [3, 1, 1]).astype(np.float32) self.img_std = np.array(cfg.MODEL.image_std).reshape( [3, 1, 1]).astype(np.float32) # set batch size and file list self.batch_size = cfg[mode.upper()]['batch_size'] self.filelist = cfg[mode.upper()]['filelist'] if self.mode == 'infer': self.video_path = cfg[mode.upper()]['video_path'] else: self.video_path = '' def create_reader(self): # if set video_path for inference mode, just load this single video if (self.mode == 'infer') and (self.video_path != ''): # load video from file stored at video_path _reader = self._inference_reader_creator( self.video_path, self.mode, seg_num=self.seg_num, seglen=self.seglen, short_size=self.short_size, target_size=self.target_size, img_mean=self.img_mean, img_std=self.img_std) else: assert os.path.exists(self.filelist), \ '{} not exist, please check the data list'.format(self.filelist) _reader = self._reader_creator(self.filelist, self.mode, seg_num=self.seg_num, seglen = self.seglen, \ short_size = self.short_size, target_size = self.target_size, \ img_mean = self.img_mean, img_std = self.img_std, \ shuffle = (self.mode == 'train'), \ num_threads = self.num_reader_threads, \ buf_size = self.buf_size, format = self.format) def _batch_reader(): batch_out = [] for imgs, label in _reader(): if imgs is None: continue batch_out.append((imgs, label)) if len(batch_out) == self.batch_size: yield batch_out batch_out = [] return _batch_reader def _inference_reader_creator(self, video_path, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): def reader(): try: imgs = mp4_loader(video_path, seg_num, seglen, mode) if len(imgs) < 1: logger.error('{} frame length {} less than 1.'.format( video_path, len(imgs))) yield None, None except: logger.error('Error when loading {}'.format(mp4_path)) yield None, None imgs_ret = imgs_transform(imgs, mode, seg_num, seglen, short_size, target_size, img_mean, img_std) label_ret = video_path yield imgs_ret, label_ret return reader def _reader_creator(self, pickle_list, mode, seg_num, seglen, short_size, target_size, img_mean, img_std, shuffle=False, num_threads=1, buf_size=1024, format='pkl'): def decode_mp4(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): sample = sample[0].split(' ') mp4_path = sample[0] # when infer, we store vid as label label = int(sample[1]) try: imgs = mp4_loader(mp4_path, seg_num, seglen, mode) if len(imgs) < 1: logger.error('{} frame length {} less than 1.'.format( mp4_path, len(imgs))) return None, None except: logger.error('Error when loading {}'.format(mp4_path)) return None, None return imgs_transform(imgs, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std ), label def decode_pickle(sample, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): pickle_path = sample[0] try: if python_ver < (3, 0): data_loaded = pickle.load(open(pickle_path, 'rb')) else: data_loaded = pickle.load( open(pickle_path, 'rb'), encoding='bytes') vid, label, frames = data_loaded if len(frames) < 1: logger.error('{} frame length {} less than 1.'.format( pickle_path, len(frames))) return None, None except: logger.info('Error when loading {}'.format(pickle_path)) return None, None if mode == 'train' or mode == 'valid' or mode == 'test': ret_label = label elif mode == 'infer': ret_label = vid imgs = video_loader(frames, seg_num, seglen, mode) return imgs_transform(imgs, mode, seg_num, seglen, \ short_size, target_size, img_mean, img_std), ret_label def reader(): with open(pickle_list) as flist: lines = [line.strip() for line in flist] if shuffle: random.shuffle(lines) for line in lines: pickle_path = line.strip() yield [pickle_path] if format == 'pkl': decode_func = decode_pickle elif format == 'mp4': decode_func = decode_mp4 else: raise "Not implemented format {}".format(format) mapper = functools.partial( decode_func, mode=mode, seg_num=seg_num, seglen=seglen, short_size=short_size, target_size=target_size, img_mean=img_mean, img_std=img_std) return paddle.reader.xmap_readers(mapper, reader, num_threads, buf_size) def imgs_transform(imgs, mode, seg_num, seglen, short_size, target_size, img_mean, img_std): imgs = group_scale(imgs, short_size) if mode == 'train': #if name == "TSM": imgs = group_multi_scale_crop(imgs, short_size) imgs = group_random_crop(imgs, target_size) imgs = group_random_flip(imgs) else: imgs = group_center_crop(imgs, target_size) np_imgs = (np.array(imgs[0]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 for i in range(len(imgs) - 1): img = (np.array(imgs[i + 1]).astype('float32').transpose( (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255 np_imgs = np.concatenate((np_imgs, img)) imgs = np_imgs imgs -= img_mean imgs /= img_std imgs = np.reshape(imgs, (seg_num, seglen * 3, target_size, target_size)) return imgs def group_multi_scale_crop(img_group, target_size, scales=None, \ max_distort=1, fix_crop=True, more_fix_crop=True): scales = scales if scales is not None else [1, .875, .75, .66] input_size = [target_size, target_size] im_size = img_group[0].size # get random crop offset def _sample_crop_size(im_size): image_w, image_h = im_size[0], im_size[1] base_size = min(image_w, image_h) crop_sizes = [int(base_size * x) for x in scales] crop_h = [ input_size[1] if abs(x - input_size[1]) < 3 else x for x in crop_sizes ] crop_w = [ input_size[0] if abs(x - input_size[0]) < 3 else x for x in crop_sizes ] pairs = [] for i, h in enumerate(crop_h): for j, w in enumerate(crop_w): if abs(i - j) <= max_distort: pairs.append((w, h)) crop_pair = random.choice(pairs) if not fix_crop: w_offset = random.randint(0, image_w - crop_pair[0]) h_offset = random.randint(0, image_h - crop_pair[1]) else: w_step = (image_w - crop_pair[0]) / 4 h_step = (image_h - crop_pair[1]) / 4 ret = list() ret.append((0, 0)) # upper left if w_step != 0: ret.append((4 * w_step, 0)) # upper right if h_step != 0: ret.append((0, 4 * h_step)) # lower left if h_step != 0 and w_step != 0: ret.append((4 * w_step, 4 * h_step)) # lower right if h_step != 0 or w_step != 0: ret.append((2 * w_step, 2 * h_step)) # center if more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter w_offset, h_offset = random.choice(ret) return crop_pair[0], crop_pair[1], w_offset, h_offset crop_w, crop_h, offset_w, offset_h = _sample_crop_size(im_size) crop_img_group = [ img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group ] ret_img_group = [ img.resize((input_size[0], input_size[1]), Image.BILINEAR) for img in crop_img_group ] return ret_img_group def group_random_crop(img_group, target_size): w, h = img_group[0].size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) out_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in img_group: if w == tw and h == th: out_images.append(img) else: out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return out_images def group_random_flip(img_group): v = random.random() if v < 0.5: ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] return ret else: return img_group def group_center_crop(img_group, target_size): img_crop = [] for img in img_group: w, h = img.size th, tw = target_size, target_size assert (w >= target_size) and (h >= target_size), \ "image width({}) and height({}) should be larger than crop size".format(w, h, target_size) x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th))) return img_crop def group_scale(imgs, target_size): resized_imgs = [] for i in range(len(imgs)): img = imgs[i] w, h = img.size if (w <= h and w == target_size) or (h <= w and h == target_size): resized_imgs.append(img) continue if w < h: ow = target_size oh = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) else: oh = target_size ow = int(target_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) return resized_imgs def imageloader(buf): if isinstance(buf, str): img = Image.open(StringIO(buf)) else: img = Image.open(BytesIO(buf)) return img.convert('RGB') def video_loader(frames, nsample, seglen, mode): videolen = len(frames) average_dur = int(videolen / nsample) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - seglen) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = frames[int(jj % videolen)] img = imageloader(imgbuf) imgs.append(img) return imgs def mp4_loader(filepath, nsample, seglen, mode): cap = cv2.VideoCapture(filepath) videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) sampledFrames = [] for i in range(videolen): ret, frame = cap.read() # maybe first frame is empty if ret == False: continue img = frame[:, :, ::-1] sampledFrames.append(img) average_dur = int(len(sampledFrames) / nsample) imgs = [] for i in range(nsample): idx = 0 if mode == 'train': if average_dur >= seglen: idx = random.randint(0, average_dur - seglen) idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i else: if average_dur >= seglen: idx = (average_dur - 1) // 2 idx += i * average_dur elif average_dur >= 1: idx += i * average_dur else: idx = i for jj in range(idx, idx + seglen): imgbuf = sampledFrames[int(jj % len(sampledFrames))] img = Image.fromarray(imgbuf, mode='RGB') imgs.append(img) return imgs