# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from model import * import paddle.fluid as fluid step_per_epoch = 2974 lambda_A = 10.0 lambda_B = 10.0 lambda_identity = 0.5 class Cycle_Gan(fluid.dygraph.Layer): def __init__(self, input_channel, istrain=True): super (Cycle_Gan, self).__init__() self.build_generator_resnet_9blocks_a = build_generator_resnet_9blocks(input_channel) self.build_generator_resnet_9blocks_b = build_generator_resnet_9blocks(input_channel) if istrain: self.build_gen_discriminator_a = build_gen_discriminator(input_channel) self.build_gen_discriminator_b = build_gen_discriminator(input_channel) def forward(self,input_A,input_B,is_G,is_DA,is_DB): if is_G: fake_B = self.build_generator_resnet_9blocks_a(input_A) fake_A = self.build_generator_resnet_9blocks_b(input_B) cyc_A = self.build_generator_resnet_9blocks_b(fake_B) cyc_B = self.build_generator_resnet_9blocks_a(fake_A) diff_A = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_A,y=cyc_A)) diff_B = fluid.layers.abs( fluid.layers.elementwise_sub( x=input_B, y=cyc_B)) cyc_A_loss = fluid.layers.reduce_mean(diff_A) * lambda_A cyc_B_loss = fluid.layers.reduce_mean(diff_B) * lambda_B cyc_loss = cyc_A_loss + cyc_B_loss fake_rec_A = self.build_gen_discriminator_a(fake_B) g_A_loss = fluid.layers.reduce_mean(fluid.layers.square(fake_rec_A-1)) fake_rec_B = self.build_gen_discriminator_b(fake_A) g_B_loss = fluid.layers.reduce_mean(fluid.layers.square(fake_rec_B-1)) G = g_A_loss + g_B_loss idt_A = self.build_generator_resnet_9blocks_a(input_B) idt_loss_A = fluid.layers.reduce_mean(fluid.layers.abs(fluid.layers.elementwise_sub(x = input_B , y = idt_A))) * lambda_B * lambda_identity idt_B = self.build_generator_resnet_9blocks_b(input_A) idt_loss_B = fluid.layers.reduce_mean(fluid.layers.abs(fluid.layers.elementwise_sub(x = input_A , y = idt_B))) * lambda_A * lambda_identity idt_loss = fluid.layers.elementwise_add(idt_loss_A,idt_loss_B) g_loss = cyc_loss + G + idt_loss return fake_A,fake_B,cyc_A,cyc_B,g_A_loss,g_B_loss,idt_loss_A,idt_loss_B,cyc_A_loss,cyc_B_loss,g_loss if is_DA: ### D rec_B = self.build_gen_discriminator_a(input_A) fake_pool_rec_B = self.build_gen_discriminator_a(input_B) return rec_B, fake_pool_rec_B if is_DB: rec_A = self.build_gen_discriminator_b(input_A) fake_pool_rec_A = self.build_gen_discriminator_b(input_B) return rec_A, fake_pool_rec_A