#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import numpy as np import argparse import functools import logging import paddle import paddle.fluid as fluid from paddle.fluid.framework import IrGraph from paddle.fluid import core from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass from paddle.fluid.contrib.slim.quantization import TransformForMobilePass sys.path.append("..") import imagenet_reader as reader sys.path.append("../../") from utility import add_arguments, print_arguments logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s') _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('model_path', str, "./pruning/checkpoints/resnet50/2/eval_model/", "Whether to use pretrained model.") add_arg('save_path', str, './output', 'Path to save inference model') add_arg('weight_quant_type', str, 'abs_max', 'quantization type for weight') # yapf: enable def eval(args): # parameters from arguments place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) val_program, feed_names, fetch_targets = fluid.io.load_inference_model( args.model_path, exe, model_filename="__model__.infer", params_filename="__params__") val_reader = paddle.batch(reader.val(), batch_size=128) feeder = fluid.DataFeeder( place=place, feed_list=feed_names, program=val_program) results = [] for batch_id, data in enumerate(val_reader()): image = [[d[0]] for d in data] label = [[d[1]] for d in data] feed_data = feeder.feed(image) pred = exe.run(val_program, feed=feed_data, fetch_list=fetch_targets) pred = np.array(pred[0]) label = np.array(label) sort_array = pred.argsort(axis=1) top_1_pred = sort_array[:, -1:][:, ::-1] top_1 = np.mean(label == top_1_pred) top_5_pred = sort_array[:, -5:][:, ::-1] acc_num = 0 for i in range(len(label)): if label[i][0] in top_5_pred[i]: acc_num += 1 top_5 = acc_num / len(label) results.append([top_1, top_5]) result = np.mean(np.array(results), axis=0) print("top1_acc/top5_acc= {}".format(result)) sys.stdout.flush() _logger.info("freeze the graph for inference") test_graph = IrGraph(core.Graph(val_program.desc), for_test=True) freeze_pass = QuantizationFreezePass( scope=fluid.global_scope(), place=place, weight_quantize_type=args.weight_quant_type) freeze_pass.apply(test_graph) server_program = test_graph.to_program() fluid.io.save_inference_model( dirname=os.path.join(args.save_path, 'float'), feeded_var_names=feed_names, target_vars=fetch_targets, executor=exe, main_program=server_program, model_filename='model', params_filename='weights') _logger.info("convert the weights into int8 type") convert_int8_pass = ConvertToInt8Pass( scope=fluid.global_scope(), place=place) convert_int8_pass.apply(test_graph) server_int8_program = test_graph.to_program() fluid.io.save_inference_model( dirname=os.path.join(args.save_path, 'int8'), feeded_var_names=feed_names, target_vars=fetch_targets, executor=exe, main_program=server_int8_program, model_filename='model', params_filename='weights') def main(): args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()