from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys import logging import paddle import argparse import functools import paddle.fluid as fluid sys.path.append("..") import imagenet_reader as reader import models sys.path.append("../../") from utility import add_arguments, print_arguments from paddle.fluid.contrib.slim import Compressor logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s') _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 64*4, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('model', str, None, "The target model") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('config_file', str, None, "The config file for compression with yaml format.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def compress(args): image_shape = "3,224,224" image_shape = [int(m) for m in image_shape.split(",")] image = fluid.data( name='image', shape=[None] + image_shape, dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') # model definition model = models.__dict__[args.model]() out = model.net(input=image, class_dim=1000) # print(out) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) val_program = fluid.default_main_program().clone() # quantization usually use small learning rate values = [1e-4, 1e-5] opt = fluid.optimizer.Momentum( momentum=0.9, learning_rate=fluid.layers.piecewise_decay( boundaries=[5000 * 12], values=values), regularization=fluid.regularizer.L2Decay(1e-4)) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if args.pretrained_model: assert os.path.exists( args.pretrained_model), "pretrained_model path doesn't exist" def if_exist(var): return os.path.exists(os.path.join(args.pretrained_model, var.name)) fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist) val_reader = paddle.batch(reader.val(), batch_size=args.batch_size) val_feed_list = [('image', image.name), ('label', label.name)] val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5', acc_top5.name)] train_reader = paddle.batch( reader.train(), batch_size=args.batch_size, drop_last=True) train_feed_list = [('image', image.name), ('label', label.name)] train_fetch_list = [('loss', avg_cost.name)] com_pass = Compressor( place, fluid.global_scope(), fluid.default_main_program(), train_reader=train_reader, train_feed_list=train_feed_list, train_fetch_list=train_fetch_list, eval_program=val_program, eval_reader=val_reader, eval_feed_list=val_feed_list, eval_fetch_list=val_fetch_list, teacher_programs=[], train_optimizer=opt, prune_infer_model=[[image.name], [out.name]], distiller_optimizer=None) com_pass.config(args.config_file) com_pass.run() conv_op_num = 0 fake_quant_op_num = 0 for op in com_pass.context.eval_graph.ops(): if op._op.type == 'conv2d': conv_op_num += 1 elif op._op.type.startswith('fake_quantize'): fake_quant_op_num += 1 print('conv op num {}'.format(conv_op_num)) print('fake quant op num {}'.format(fake_quant_op_num)) def main(): args = parser.parse_args() print_arguments(args) compress(args) if __name__ == '__main__': main()