import mmh3 class Dataset: def __init__(self): pass class CriteoDataset(Dataset): def __init__(self, sparse_feature_dim): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.cont_diff_ = [ 20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.hash_dim_ = sparse_feature_dim # here, training data are lines with line_index < train_idx_ self.train_idx_ = 41256555 self.continuous_range_ = range(1, 14) self.categorical_range_ = range(14, 40) def _reader_creator(self, file_list, is_train, trainer_num, trainer_id): def reader(): for file in file_list: with open(file, 'r') as f: line_idx = 0 for line in f: line_idx += 1 if is_train and line_idx > self.train_idx_: break elif not is_train and line_idx <= self.train_idx_: continue if line_idx % trainer_num != trainer_id: continue features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in self.continuous_range_: if features[idx] == '': dense_feature.append(0.0) else: dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / self.cont_diff_[idx - 1]) for idx in self.categorical_range_: sparse_feature.append([ mmh3.hash(str(idx) + features[idx]) % self.hash_dim_ ]) label = [int(features[0])] yield [dense_feature] + sparse_feature + [label] return reader def train(self, file_list, trainer_num, trainer_id): return self._reader_creator(file_list, True, trainer_num, trainer_id) def test(self, file_list): return self._reader_creator(file_list, False, 1, 0) def infer(self, file_list): return self._reader_creator(file_list, False, 1, 0)