# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import xml.etree.ElementTree import os import time import copy import six import cv2 import math import paddle from collections import deque import data_utils from roidbs import ICDAR2015Dataset, ICDAR2017Dataset from config import cfg from PIL import Image from data_utils import _resize num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) np.random.seed(10) def roidb_reader(roidb, mode): im, im_scales, gt_boxes, gt_classes = data_utils.get_image_blob(roidb, mode) im_id = roidb['im_id'] is_crowd = roidb['is_crowd'] im_height = np.round(roidb['height'] * im_scales) im_width = np.round(roidb['width'] * im_scales) is_difficult = roidb['is_difficult'] im_info = np.array([im_height, im_width, im_scales], dtype=np.float32) if mode == 'val': return im, gt_boxes, gt_classes, is_crowd, im_info, im_id, is_difficult outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id) return outs def RRPNData(mode, batch_size=None, total_batch_size=None, padding_total=False, shuffle=False, shuffle_seed=None): #, #roidbs=None): total_batch_size = total_batch_size if total_batch_size else batch_size assert total_batch_size % batch_size == 0 if cfg.dataset == "icdar2015": icdar2015_dataset = ICDAR2015Dataset(mode) roidbs = icdar2015_dataset.get_roidb() else: icdar2017_dataset = ICDAR2017Dataset(mode) roidbs = icdar2017_dataset.get_roidb() print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs))) def reader(): if mode == "train": if shuffle: if shuffle_seed is not None: np.random.seed(shuffle_seed) roidb_perm = deque(np.random.permutation(roidbs)) else: roidb_perm = deque(roidbs) roidb_cur = 0 count = 0 batch_out = [] device_num = total_batch_size / batch_size while True: start = time.time() roidb = roidb_perm[0] roidb_cur += 1 roidb_perm.rotate(-1) if roidb_cur >= len(roidbs): if shuffle: roidb_perm = deque(np.random.permutation(roidbs)) else: roidb_perm = deque(roidbs) roidb_cur = 0 # im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks datas = roidb_reader(roidb, mode) if datas[1].shape[0] == 0: continue batch_out.append(datas) end = time.time() #print('reader time:', end - start) if len(batch_out) == batch_size: yield batch_out count += 1 batch_out = [] iter_id = count // device_num if iter_id >= cfg.max_iter * num_trainers: return elif mode == "val": batch_out = [] for roidb in roidbs: im, gt_boxes, gt_classes, is_crowd, im_info, im_id, is_difficult = roidb_reader( roidb, mode) batch_out.append((im, gt_boxes, gt_classes, is_crowd, im_info, im_id, is_difficult)) if len(batch_out) == batch_size: yield batch_out batch_out = [] if len(batch_out) != 0: yield batch_out return reader def train(batch_size, total_batch_size=None, padding_total=False, num_workers=20, shuffle=True, shuffle_seed=None): return RRPNData( 'train', batch_size, total_batch_size, padding_total, shuffle=shuffle, shuffle_seed=shuffle_seed) def test(batch_size, total_batch_size=None, padding_total=False): return RRPNData('val', batch_size, total_batch_size, shuffle=False) def infer(file_path): def reader(): imgs = os.listdir(file_path) imgs.sort() for image in imgs: if not os.path.exists(file_path): raise ValueError("Image path [%s] does not exist." % (file_path)) with open(os.path.join(file_path, image), 'rb') as f: data = f.read() data = np.frombuffer(data, dtype='uint8') img = cv2.imdecode(data, 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img, im_scale = _resize(img, target_size=1000, max_size=1778) img = img.astype(np.float32, copy=False) img = img / 255.0 mean = np.array(cfg.pixel_means)[np.newaxis, np.newaxis, :] std = np.array(cfg.pixel_std)[np.newaxis, np.newaxis, :] img -= mean img /= std img = img.transpose((2, 0, 1)) h = img.shape[1] w = img.shape[2] im_info = np.array([h, w, im_scale], dtype=np.float32) yield [(img, im_info)] return reader if __name__ == '__main__': from utility import parse_args args = parse_args() train_reader = train(1, shuffle=True) import time time0 = time.time() for iter_id, data in enumerate(train_reader()): print('iter:', iter_id) print('cost:', time.time() - time0) time0 = time.time()