# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import time import numpy as np import pickle import paddle import paddle.fluid as fluid import reader import models.model_builder as model_builder import models.resnet as resnet import checkpoint as checkpoint from config import cfg from data_utils import DatasetPath from eval_helper import * from utility import print_arguments, parse_args, check_gpu def infer(): place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size] class_nums = cfg.class_num model = model_builder.RRPN( add_conv_body_func=resnet.ResNet(), add_roi_box_head_func=resnet.ResNetC5(), use_pyreader=False, mode='infer') startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): model.build_model(image_shape) pred_boxes = model.eval_bbox_out() infer_prog = infer_prog.clone(True) exe.run(startup_prog) # yapf: disable def if_exist(var): return os.path.exists(os.path.join(cfg.pretrained_model, var.name)) if cfg.pretrained_model: checkpoint.load_params(exe, infer_prog, cfg.pretrained_model) # yapf: enable infer_reader = reader.infer(cfg.image_path) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) fetch_list = [pred_boxes] imgs = os.listdir(cfg.image_path) imgs.sort() for i, data in enumerate(infer_reader()): result = exe.run(infer_prog, fetch_list=[v.name for v in fetch_list], feed=feeder.feed(data), return_numpy=False) nmsed_out = result[0] im_info = data[0][1] im_scale = im_info[2] outs = np.array(nmsed_out) draw_bounding_box_on_image(cfg.image_path, imgs[i], outs, im_scale, cfg.draw_threshold) if __name__ == '__main__': args = parse_args() print_arguments(args) check_gpu(args.use_gpu) infer()