# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import numpy as np import argparse import functools from PIL import Image def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import paddle.fluid as fluid import reader from pyramidbox import PyramidBox from visualize import draw_bboxes from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('use_gpu', bool, True, "Whether use GPU or not.") add_arg('use_pyramidbox', bool, True, "Whether use PyramidBox model.") add_arg('data_dir', str, 'data/WIDER_val/images/', "The validation dataset path.") add_arg('model_dir', str, '', "The model path.") add_arg('pred_dir', str, 'pred', "The path to save the evaluation results.") add_arg('file_list', str, 'data/wider_face_split/wider_face_val_bbx_gt.txt', "The validation dataset path.") add_arg('infer', bool, False, "Whether do infer or eval.") add_arg('confs_threshold', float, 0.15, "Confidence threshold to draw bbox.") add_arg('image_path', str, '', "The image used to inference and visualize.") # yapf: enable def infer(args, config): model_dir = args.model_dir pred_dir = args.pred_dir if not os.path.exists(model_dir): raise ValueError("The model path [%s] does not exist." % (model_dir)) if args.infer: image_path = args.image_path image = Image.open(image_path) if image.mode == 'L': image = img.convert('RGB') shrink, max_shrink = get_shrink(image.size[1], image.size[0]) det0 = detect_face(image, shrink) if args.use_gpu: det1 = flip_test(image, shrink) [det2, det3] = multi_scale_test(image, max_shrink) det4 = multi_scale_test_pyramid(image, max_shrink) det = np.row_stack((det0, det1, det2, det3, det4)) dets = bbox_vote(det) else: # when infer on cpu, use a simple case dets = det0 keep_index = np.where(dets[:, 4] >= args.confs_threshold)[0] dets = dets[keep_index, :] draw_bboxes(image_path, dets[:, 0:4]) else: test_reader = reader.test(config, args.file_list) for image, image_path in test_reader(): shrink, max_shrink = get_shrink(image.size[1], image.size[0]) det0 = detect_face(image, shrink) det1 = flip_test(image, shrink) [det2, det3] = multi_scale_test(image, max_shrink) det4 = multi_scale_test_pyramid(image, max_shrink) det = np.row_stack((det0, det1, det2, det3, det4)) dets = bbox_vote(det) save_widerface_bboxes(image_path, dets, pred_dir) print("Finish evaluation.") def save_widerface_bboxes(image_path, bboxes_scores, output_dir): """ Save predicted results, including bbox and score into text file. Args: image_path (string): file name. bboxes_scores (np.array|list): the predicted bboxed and scores, layout is (xmin, ymin, xmax, ymax, score) output_dir (string): output directory. """ image_name = image_path.split('/')[-1] image_class = image_path.split('/')[-2] odir = os.path.join(output_dir, image_class) if not os.path.exists(odir): os.makedirs(odir) ofname = os.path.join(odir, '%s.txt' % (image_name[:-4])) f = open(ofname, 'w') f.write('{:s}\n'.format(image_class + '/' + image_name)) f.write('{:d}\n'.format(bboxes_scores.shape[0])) for box_score in bboxes_scores: xmin, ymin, xmax, ymax, score = box_score f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, ( xmax - xmin + 1), (ymax - ymin + 1), score)) f.close() print("The predicted result is saved as {}".format(ofname)) def detect_face(image, shrink): image_shape = [3, image.size[1], image.size[0]] if shrink != 1: h, w = int(image_shape[1] * shrink), int(image_shape[2] * shrink) image = image.resize((w, h), Image.ANTIALIAS) image_shape = [3, h, w] img = np.array(image) img = reader.to_chw_bgr(img) mean = [104., 117., 123.] scale = 0.007843 img = img.astype('float32') img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32') img = img * scale img = [img] img = np.array(img) detection, = exe.run(infer_program, feed={'image': img}, fetch_list=fetches, return_numpy=False) detection = np.array(detection) # layout: xmin, ymin, xmax. ymax, score if np.prod(detection.shape) == 1: print("No face detected") return np.array([[0, 0, 0, 0, 0]]) det_conf = detection[:, 1] det_xmin = image_shape[2] * detection[:, 2] / shrink det_ymin = image_shape[1] * detection[:, 3] / shrink det_xmax = image_shape[2] * detection[:, 4] / shrink det_ymax = image_shape[1] * detection[:, 5] / shrink det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf)) return det def bbox_vote(det): order = det[:, 4].ravel().argsort()[::-1] det = det[order, :] if det.shape[0] == 0: dets = np.array([[10, 10, 20, 20, 0.002]]) det = np.empty(shape=[0, 5]) while det.shape[0] > 0: # IOU area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1) xx1 = np.maximum(det[0, 0], det[:, 0]) yy1 = np.maximum(det[0, 1], det[:, 1]) xx2 = np.minimum(det[0, 2], det[:, 2]) yy2 = np.minimum(det[0, 3], det[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h o = inter / (area[0] + area[:] - inter) # nms merge_index = np.where(o >= 0.3)[0] det_accu = det[merge_index, :] det = np.delete(det, merge_index, 0) if merge_index.shape[0] <= 1: if det.shape[0] == 0: try: dets = np.row_stack((dets, det_accu)) except: dets = det_accu continue det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4)) max_score = np.max(det_accu[:, 4]) det_accu_sum = np.zeros((1, 5)) det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:]) det_accu_sum[:, 4] = max_score try: dets = np.row_stack((dets, det_accu_sum)) except: dets = det_accu_sum dets = dets[0:750, :] return dets def flip_test(image, shrink): img = image.transpose(Image.FLIP_LEFT_RIGHT) det_f = detect_face(img, shrink) det_t = np.zeros(det_f.shape) # image.size: [width, height] det_t[:, 0] = image.size[0] - det_f[:, 2] det_t[:, 1] = det_f[:, 1] det_t[:, 2] = image.size[0] - det_f[:, 0] det_t[:, 3] = det_f[:, 3] det_t[:, 4] = det_f[:, 4] return det_t def multi_scale_test(image, max_shrink): # Shrink detecting is only used to detect big faces st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink det_s = detect_face(image, st) index = np.where( np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0] det_s = det_s[index, :] # Enlarge one times bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2 det_b = detect_face(image, bt) # Enlarge small image x times for small faces if max_shrink > 2: bt *= 2 while bt < max_shrink: det_b = np.row_stack((det_b, detect_face(image, bt))) bt *= 2 det_b = np.row_stack((det_b, detect_face(image, max_shrink))) # Enlarged images are only used to detect small faces. if bt > 1: index = np.where( np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0] det_b = det_b[index, :] # Shrinked images are only used to detect big faces. else: index = np.where( np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0] det_b = det_b[index, :] return det_s, det_b def multi_scale_test_pyramid(image, max_shrink): # Use image pyramids to detect faces det_b = detect_face(image, 0.25) index = np.where( np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0] det_b = det_b[index, :] st = [0.75, 1.25, 1.5, 1.75] for i in range(len(st)): if (st[i] <= max_shrink): det_temp = detect_face(image, st[i]) # Enlarged images are only used to detect small faces. if st[i] > 1: index = np.where( np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1, det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0] det_temp = det_temp[index, :] # Shrinked images are only used to detect big faces. else: index = np.where( np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1, det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0] det_temp = det_temp[index, :] det_b = np.row_stack((det_b, det_temp)) return det_b def get_shrink(height, width): """ Args: height (int): image height. width (int): image width. """ # avoid out of memory max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5 max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5 def get_round(x, loc): str_x = str(x) if '.' in str_x: str_before, str_after = str_x.split('.') len_after = len(str_after) if len_after >= 3: str_final = str_before + '.' + str_after[0:loc] return float(str_final) else: return x max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3 if max_shrink >= 1.5 and max_shrink < 2: max_shrink = max_shrink - 0.1 elif max_shrink >= 2 and max_shrink < 3: max_shrink = max_shrink - 0.2 elif max_shrink >= 3 and max_shrink < 4: max_shrink = max_shrink - 0.3 elif max_shrink >= 4 and max_shrink < 5: max_shrink = max_shrink - 0.4 elif max_shrink >= 5: max_shrink = max_shrink - 0.5 elif max_shrink <= 0.1: max_shrink = 0.1 shrink = max_shrink if max_shrink < 1 else 1 return shrink, max_shrink if __name__ == '__main__': args = parser.parse_args() print_arguments(args) config = reader.Settings(data_dir=args.data_dir) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) main_program = fluid.Program() startup_program = fluid.Program() image_shape = [3, 1024, 1024] with fluid.program_guard(main_program, startup_program): network = PyramidBox( data_shape=image_shape, sub_network=args.use_pyramidbox, is_infer=True) infer_program, nmsed_out = network.infer(main_program) fetches = [nmsed_out] exe.run(startup_program) fluid.io.load_persistables( exe, args.model_dir, main_program=infer_program) # save model and program #fluid.io.save_inference_model('pyramidbox_model', # ['image'], [nmsed_out], exe, main_program=infer_program, # model_filename='model', params_filename='params') infer(args, config)