DATAAUG: RAND_SCALE_MIN: 0.5 RAND_SCALE_MAX: 2.0 BASE_SIZE: 520 CROP_SIZE: 520 EXTRA: True TRAIN_BATCH_SIZE_PER_GPU: 4 NUM_TRAINERS: 4 EVAL_BATCH_SIZE: 1 DATASET: DATASET_NAME: "pascalContext" DATA_DIR: "./data/pascalContext/" IMAGE_TYPE: "rgb" # choice rgb or rgba NUM_CLASSES: 59 TEST_FILE_LIST: "./data/pascalContext/pascal_context_val.txt" TRAIN_FILE_LIST: "./data/pascalContext/pascal_context_train.txt" VAL_FILE_LIST: "./data/pascalContext/pascal_context_val.txt" IGNORE_INDEX: -1 DATA_DIM: 3 SEPARATOR: ' ' MODEL: MODEL_NAME: "deeplabv3" DEFAULT_NORM_TYPE: "bn" MULTI_LOSS_WEIGHT: [1.0,0.4] BACKBONE: "resnet" BACKBONE_LAYERS: 101 BACKBONE_MULTI_GRID: True DEEPLABv3: DEPTH_MULTIPLIER: 1 ASPP_WITH_SEP_CONV: True AuxHead: True TRAIN: PRETRAINED_MODEL_DIR: "./pretrained_model/resnet101_v2/" MODEL_SAVE_DIR: "./snapshots/deeplabv3_resnet_pascalcontext/" SNAPSHOT_EPOCH: 1 TEST: TEST_MODEL: "./snapshots/deeplabv3_resnet_pascalcontext" BASE_SIZE: 520 CROP_SIZE: 520 SLIDE_WINDOW: True SOLVER: LR: 0.005 LR_POLICY: "poly" OPTIMIZER: "sgd" NUM_EPOCHS: 80 LOSS: "['softmax_loss']"