#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid import os import sys import math import distutils.util import numpy as np import inspect import matplotlib import six matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import copy from PIL import Image img_dim = 28 def plot(gen_data): pad_dim = 1 paded = pad_dim + img_dim gen_data = gen_data.reshape(gen_data.shape[0], img_dim, img_dim) n = int(math.ceil(math.sqrt(gen_data.shape[0]))) gen_data = (np.pad( gen_data, [[0, n * n - gen_data.shape[0]], [pad_dim, 0], [pad_dim, 0]], 'constant').reshape((n, n, paded, paded)).transpose((0, 2, 1, 3)) .reshape((n * paded, n * paded))) fig = plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(gen_data, cmap='Greys_r', vmin=-1, vmax=1) return fig def checkpoints(epoch, cfg, exe, trainer, name): output_path = os.path.join(cfg.output, 'checkpoints', str(epoch)) if not os.path.exists(output_path): os.makedirs(output_path) fluid.io.save_persistables( exe, os.path.join(output_path, name), main_program=trainer.program) print('save checkpoints {} to {}'.format(name, output_path)) sys.stdout.flush() def init_checkpoints(cfg, exe, trainer, name): assert os.path.exists(cfg.init_model), "{} cannot be found.".format( cfg.init_model) fluid.io.load_persistables( exe, os.path.join(cfg.init_model, name), main_program=trainer.program) print('load checkpoints {} {} DONE'.format(cfg.init_model, name)) sys.stdout.flush() ### the initialize checkpoint is one file named checkpoint.pdparams def init_from_checkpoint(args, exe, trainer, name): if not os.path.exists(args.init_model): raise Warning("the checkpoint path does not exist.") return False fluid.io.load_persistables( executor=exe, dirname=os.path.join(args.init_model, name), main_program=trainer.program, filename="checkpoint.pdparams") print("finish initing model from checkpoint from %s" % (args.init_model)) return True ### save the parameters of generator to one file def save_param(args, exe, program, dirname, var_name="generator"): param_dir = os.path.join(args.output, 'infer_vars') if not os.path.exists(param_dir): os.makedirs(param_dir) def _name_has_generator(var): res = (fluid.io.is_parameter(var) and var.name.startswith(var_name)) print(var.name, res) return res fluid.io.save_vars( exe, os.path.join(param_dir, dirname), main_program=program, predicate=_name_has_generator, filename="params.pdparams") print("save parameters at %s" % (os.path.join(param_dir, dirname))) return True ### save the checkpoint to one file def save_checkpoint(epoch, args, exe, trainer, dirname): checkpoint_dir = os.path.join(args.output, 'checkpoints', str(epoch)) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) fluid.io.save_persistables( exe, os.path.join(checkpoint_dir, dirname), main_program=trainer.program, filename="checkpoint.pdparams") print("save checkpoint at %s" % (os.path.join(checkpoint_dir, dirname))) return True def save_test_image(epoch, cfg, exe, place, test_program, g_trainer, A_test_reader, B_test_reader=None, A_id2name=None, B_id2name=None): out_path = os.path.join(cfg.output, 'test') if not os.path.exists(out_path): os.makedirs(out_path) if cfg.model_net == "Pix2pix": for data in A_test_reader(): A_data, B_data, image_name = data[0]['input_A'], data[0][ 'input_B'], data[0]['image_name'] fake_B_temp = exe.run(test_program, fetch_list=[g_trainer.fake_B], feed={"input_A": A_data, "input_B": B_data}) fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0]) input_A_temp = np.squeeze(np.array(A_data)[0]).transpose([1, 2, 0]) input_B_temp = np.squeeze(np.array(B_data)[0]).transpose([1, 2, 0]) fakeB_name = "fakeB_" + str(epoch) + "_" + A_id2name[np.array( image_name).astype('int32')[0]] inputA_name = "inputA_" + str(epoch) + "_" + A_id2name[np.array( image_name).astype('int32')[0]] inputB_name = "inputB_" + str(epoch) + "_" + A_id2name[np.array( image_name).astype('int32')[0]] res_fakeB = Image.fromarray(((fake_B_temp + 1) * 127.5).astype( np.uint8)) res_fakeB.save(os.path.join(out_path, fakeB_name)) res_inputA = Image.fromarray(((input_A_temp + 1) * 127.5).astype( np.uint8)) res_inputA.save(os.path.join(out_path, inputA_name)) res_inputB = Image.fromarray(((input_B_temp + 1) * 127.5).astype( np.uint8)) res_inputB.save(os.path.join(out_path, inputB_name)) elif cfg.model_net == "SPADE": for data in A_test_reader(): data_A, data_B, data_C, name = data[0]['input_label'], data[0][ 'input_img'], data[0]['input_ins'], data[0]['image_name'] fake_B_temp = exe.run(test_program, fetch_list=[g_trainer.fake_B], feed={ "input_label": data_A, "input_img": data_B, "input_ins": data_C }) fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0]) input_B_temp = np.squeeze(data_B[0]).transpose([1, 2, 0]) image_name = A_id2name[np.array(name).astype('int32')[0]] res_fakeB = Image.fromarray(((fake_B_temp + 1) * 127.5).astype( np.uint8)) res_fakeB.save(out_path + "/fakeB_" + str(epoch) + "_" + image_name) res_real = Image.fromarray(((input_B_temp + 1) * 127.5).astype( np.uint8)) res_real.save(out_path + "/real_" + str(epoch) + "_" + image_name) elif cfg.model_net == "StarGAN": for data in A_test_reader(): real_img, label_org, label_trg, image_name = data[0][ 'image_real'], data[0]['label_org'], data[0]['label_trg'], data[ 0]['image_name'] attr_names = cfg.selected_attrs.split(',') real_img_temp = save_batch_image(np.array(real_img)) images = [real_img_temp] for i in range(cfg.c_dim): label_trg_tmp = copy.deepcopy(np.array(label_org)) for j in range(len(np.array(label_org))): label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i] np_label_trg = check_attribute_conflict( label_trg_tmp, attr_names[i], attr_names) label_trg.set(np_label_trg, place) fake_temp, rec_temp = exe.run( test_program, feed={ "image_real": real_img, "label_org": label_org, "label_trg": label_trg }, fetch_list=[g_trainer.fake_img, g_trainer.rec_img]) fake_temp = save_batch_image(fake_temp) rec_temp = save_batch_image(rec_temp) images.append(fake_temp) images.append(rec_temp) images_concat = np.concatenate(images, 1) if len(np.array(label_org)) > 1: images_concat = np.concatenate(images_concat, 1) image_name_save = "fake_img" + str(epoch) + "_" + str( np.array(image_name)[0].astype('int32')) + '.jpg' res = Image.fromarray(((images_concat + 1) * 127.5).astype( np.uint8)) res.save(os.path.join(out_path, image_name_save)) elif cfg.model_net == 'AttGAN' or cfg.model_net == 'STGAN': for data in A_test_reader(): real_img, label_org, label_trg, image_name = data[0][ 'image_real'], data[0]['label_org'], data[0]['label_trg'], data[ 0]['image_name'] attr_names = cfg.selected_attrs.split(',') real_img_temp = save_batch_image(np.array(real_img)) images = [real_img_temp] for i in range(cfg.c_dim): label_trg_tmp = copy.deepcopy(np.array(label_trg)) for j in range(len(label_trg_tmp)): label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i] label_trg_tmp = check_attribute_conflict( label_trg_tmp, attr_names[i], attr_names) label_org_tmp = list( map(lambda x: ((x * 2) - 1) * 0.5, np.array(label_org))) label_trg_tmp = list( map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp)) if cfg.model_net == 'AttGAN': for k in range(len(label_trg_tmp)): label_trg_tmp[k][i] = label_trg_tmp[k][i] * 2.0 tensor_label_org_ = fluid.LoDTensor() tensor_label_org_.set(label_org_tmp, place) tensor_label_trg_ = fluid.LoDTensor() tensor_label_trg_.set(label_trg_tmp, place) out = exe.run(test_program, feed={ "image_real": real_img, "label_org": label_org, "label_org_": tensor_label_org_, "label_trg": label_trg, "label_trg_": tensor_label_trg_ }, fetch_list=[g_trainer.fake_img]) fake_temp = save_batch_image(out[0]) images.append(fake_temp) images_concat = np.concatenate(images, 1) if len(label_trg_tmp) > 1: images_concat = np.concatenate(images_concat, 1) image_name_save = 'fake_img_' + str(epoch) + '_' + str( np.array(image_name)[0].astype('int32')) + '.jpg' res = Image.fromarray(((images_concat + 1) * 127.5).astype( np.uint8)) res.save(os.path.join(out_path, image_name_save)) else: for data_A, data_B in zip(A_test_reader(), B_test_reader()): A_data, A_name = data_A[0]['input_A'], data_A[0]['A_image_name'] B_data, B_name = data_B[0]['input_B'], data_B[0]['B_image_name'] fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = exe.run( test_program, fetch_list=[ g_trainer.fake_A, g_trainer.fake_B, g_trainer.cyc_A, g_trainer.cyc_B ], feed={"input_A": A_data, "input_B": B_data}) fake_A_temp = np.squeeze(fake_A_temp[0]).transpose([1, 2, 0]) fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0]) cyc_A_temp = np.squeeze(cyc_A_temp[0]).transpose([1, 2, 0]) cyc_B_temp = np.squeeze(cyc_B_temp[0]).transpose([1, 2, 0]) input_A_temp = np.squeeze(np.array(A_data)).transpose([1, 2, 0]) input_B_temp = np.squeeze(np.array(B_data)).transpose([1, 2, 0]) fakeA_name = "fakeA_" + str(epoch) + "_" + A_id2name[np.array( A_name).astype('int32')[0]] fakeB_name = "fakeB_" + str(epoch) + "_" + B_id2name[np.array( B_name).astype('int32')[0]] inputA_name = "inputA_" + str(epoch) + "_" + A_id2name[np.array( A_name).astype('int32')[0]] inputB_name = "inputB_" + str(epoch) + "_" + B_id2name[np.array( B_name).astype('int32')[0]] cycA_name = "cycA_" + str(epoch) + "_" + A_id2name[np.array( A_name).astype('int32')[0]] cycB_name = "cycB_" + str(epoch) + "_" + B_id2name[np.array( B_name).astype('int32')[0]] res_fakeB = Image.fromarray(((fake_B_temp + 1) * 127.5).astype( np.uint8)) res_fakeB.save(os.path.join(out_path, fakeB_name)) res_fakeA = Image.fromarray(((fake_A_temp + 1) * 127.5).astype( np.uint8)) res_fakeA.save(os.path.join(out_path, fakeA_name)) res_cycA = Image.fromarray(((cyc_A_temp + 1) * 127.5).astype( np.uint8)) res_cycA.save(os.path.join(out_path, cycA_name)) res_cycB = Image.fromarray(((cyc_B_temp + 1) * 127.5).astype( np.uint8)) res_cycB.save(os.path.join(out_path, cycB_name)) res_inputA = Image.fromarray(((input_A_temp + 1) * 127.5).astype( np.uint8)) res_inputA.save(os.path.join(out_path, inputA_name)) res_inputB = Image.fromarray(((input_B_temp + 1) * 127.5).astype( np.uint8)) res_inputB.save(os.path.join(out_path, inputB_name)) class ImagePool(object): def __init__(self, pool_size=50): self.pool = [] self.count = 0 self.pool_size = pool_size def pool_image(self, image): if self.count < self.pool_size: self.pool.append(image) self.count += 1 return image else: p = np.random.rand() if p > 0.5: random_id = np.random.randint(0, self.pool_size - 1) temp = self.pool[random_id] self.pool[random_id] = image return temp else: return image def check_attribute_conflict(label_batch, attr, attrs): ''' Based on https://github.com/LynnHo/AttGAN-Tensorflow''' def _set(label, value, attr): if attr in attrs: label[attrs.index(attr)] = value attr_id = attrs.index(attr) for label in label_batch: if attr in ['Bald', 'Receding_Hairline'] and attrs[attr_id] != 0: _set(label, 0, 'Bangs') elif attr == 'Bangs' and attrs[attr_id] != 0: _set(label, 0, 'Bald') _set(label, 0, 'Receding_Hairline') elif attr in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair' ] and attrs[attr_id] != 0: for a in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']: if a != attr: _set(label, 0, a) elif attr in ['Straight_Hair', 'Wavy_Hair'] and attrs[attr_id] != 0: for a in ['Straight_Hair', 'Wavy_Hair']: if a != attr: _set(label, 0, a) return label_batch def save_batch_image(img): #if img.shape[0] == 1: if len(img) == 1: res_img = np.squeeze(img).transpose([1, 2, 0]) else: res_img = np.squeeze(img).transpose([0, 2, 3, 1]) return res_img def check_gpu(use_gpu): """ Log error and exit when set use_gpu=true in paddlepaddle cpu version. """ err = "Config use_gpu cannot be set as true while you are " \ "using paddlepaddle cpu version ! \nPlease try: \n" \ "\t1. Install paddlepaddle-gpu to run model on GPU \n" \ "\t2. Set use_gpu as false in config file to run " \ "model on CPU" try: if use_gpu and not fluid.is_compiled_with_cuda(): print(err) sys.exit(1) except Exception as e: pass def check_version(): """ Log error and exit when the installed version of paddlepaddle is not satisfied. """ err = "PaddlePaddle version 1.6 or higher is required, " \ "or a suitable develop version is satisfied as well. \n" \ "Please make sure the version is good with your code." \ try: fluid.require_version('1.6.0') except Exception as e: print(err) sys.exit(1) def get_device_num(args): if args.use_gpu: gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1) gpu_num = len(gpus.split(',')) return gpu_num else: cpu_num = os.environ.get("CPU_NUM", 1) return int(cpu_num)