# This config is based on https://github.com/sshaoshuai/PointRCNN/blob/master/tools/cfgs/default.yaml CLASSES: Car INCLUDE_SIMILAR_TYPE: True # config of augmentation AUG_DATA: True AUG_METHOD_LIST: ['rotation', 'scaling', 'flip'] AUG_METHOD_PROB: [1.0, 1.0, 0.5] AUG_ROT_RANGE: 18 GT_AUG_ENABLED: True GT_EXTRA_NUM: 15 GT_AUG_RAND_NUM: True GT_AUG_APPLY_PROB: 1.0 GT_AUG_HARD_RATIO: 0.6 PC_REDUCE_BY_RANGE: True PC_AREA_SCOPE: [[-40, 40], [-1, 3], [0, 70.4]] # x, y, z scope in rect camera coords CLS_MEAN_SIZE: [[1.52563191462, 1.62856739989, 3.88311640418]] # 1. config of rpn network RPN: ENABLED: True FIXED: False # config of input USE_INTENSITY: False # config of bin-based loss LOC_XZ_FINE: True LOC_SCOPE: 3.0 LOC_BIN_SIZE: 0.5 NUM_HEAD_BIN: 12 # config of network structure BACKBONE: pointnet2_msg USE_BN: True NUM_POINTS: 16384 SA_CONFIG: NPOINTS: [4096, 1024, 256, 64] RADIUS: [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]] NSAMPLE: [[16, 32], [16, 32], [16, 32], [16, 32]] MLPS: [[[16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]], [[128, 196, 256], [128, 196, 256]], [[256, 256, 512], [256, 384, 512]]] FP_MLPS: [[128, 128], [256, 256], [512, 512], [512, 512]] CLS_FC: [128] REG_FC: [128] DP_RATIO: 0.5 # config of training LOSS_CLS: SigmoidFocalLoss FG_WEIGHT: 15 FOCAL_ALPHA: [0.25, 0.75] FOCAL_GAMMA: 2.0 REG_LOSS_WEIGHT: [1.0, 1.0, 1.0, 1.0] LOSS_WEIGHT: [1.0, 1.0] NMS_TYPE: normal # config of testing SCORE_THRESH: 0.3 # 2. config of rcnn network RCNN: ENABLED: True # config of input ROI_SAMPLE_JIT: False REG_AUG_METHOD: multiple # multiple, single, normal ROI_FG_AUG_TIMES: 10 USE_RPN_FEATURES: True USE_MASK: True MASK_TYPE: seg USE_INTENSITY: False USE_DEPTH: True USE_SEG_SCORE: False POOL_EXTRA_WIDTH: 1.0 # config of bin-based loss LOC_SCOPE: 1.5 LOC_BIN_SIZE: 0.5 NUM_HEAD_BIN: 9 LOC_Y_BY_BIN: False LOC_Y_SCOPE: 0.5 LOC_Y_BIN_SIZE: 0.25 SIZE_RES_ON_ROI: False # config of network structure USE_BN: False DP_RATIO: 0.0 BACKBONE: pointnet # pointnet XYZ_UP_LAYER: [128, 128] NUM_POINTS: 512 SA_CONFIG: NPOINTS: [128, 32, -1] RADIUS: [0.2, 0.4, 100] NSAMPLE: [64, 64, 64] MLPS: [[128, 128, 128], [128, 128, 256], [256, 256, 512]] CLS_FC: [256, 256] REG_FC: [256, 256] # config of training LOSS_CLS: BinaryCrossEntropy FOCAL_ALPHA: [0.25, 0.75] FOCAL_GAMMA: 2.0 CLS_WEIGHT: [1.0, 1.0, 1.0] CLS_FG_THRESH: 0.6 CLS_BG_THRESH: 0.45 CLS_BG_THRESH_LO: 0.05 REG_FG_THRESH: 0.55 FG_RATIO: 0.5 ROI_PER_IMAGE: 64 HARD_BG_RATIO: 0.8 # config of testing SCORE_THRESH: 0.3 NMS_THRESH: 0.1 # general training config TRAIN: SPLIT: train VAL_SPLIT: smallval LR: 0.002 LR_CLIP: 0.00001 LR_DECAY: 0.5 DECAY_STEP_LIST: [100, 150, 180, 200] LR_WARMUP: True WARMUP_MIN: 0.0002 WARMUP_EPOCH: 1 BN_MOMENTUM: 0.1 BN_DECAY: 0.5 BNM_CLIP: 0.01 BN_DECAY_STEP_LIST: [1000] OPTIMIZER: adam # adam, adam_onecycle WEIGHT_DECAY: 0.001 # L2 regularization MOMENTUM: 0.9 MOMS: [0.95, 0.85] DIV_FACTOR: 10.0 PCT_START: 0.4 GRAD_NORM_CLIP: 1.0 RPN_PRE_NMS_TOP_N: 9000 RPN_POST_NMS_TOP_N: 512 RPN_NMS_THRESH: 0.85 RPN_DISTANCE_BASED_PROPOSE: True TEST: SPLIT: val RPN_PRE_NMS_TOP_N: 9000 RPN_POST_NMS_TOP_N: 100 RPN_NMS_THRESH: 0.8 RPN_DISTANCE_BASED_PROPOSE: True