# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import math import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers def network(batch_size, items_num, hidden_size, step): stdv = 1.0 / math.sqrt(hidden_size) items = layers.data( name="items", shape=[batch_size, items_num, 1], dtype="int64", append_batch_size=False) #[bs, uniq_max, 1] seq_index = layers.data( name="seq_index", shape=[batch_size, items_num], dtype="int32", append_batch_size=False) #[-1(seq_max)*batch_size, 1] last_index = layers.data( name="last_index", shape=[batch_size], dtype="int32", append_batch_size=False) #[batch_size, 1] adj_in = layers.data( name="adj_in", shape=[batch_size, items_num, items_num], dtype="float32", append_batch_size=False) adj_out = layers.data( name="adj_out", shape=[batch_size, items_num, items_num], dtype="float32", append_batch_size=False) mask = layers.data( name="mask", shape=[batch_size, -1, 1], dtype="float32", append_batch_size=False) label = layers.data( name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False) items_emb = layers.embedding( input=items, param_attr=fluid.ParamAttr( name="emb", initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), size=[items_num, hidden_size]) #[batch_size, uniq_max, h] pre_state = items_emb for i in range(step): pre_state = layers.reshape( x=pre_state, shape=[batch_size, -1, hidden_size]) state_in = layers.fc( input=pre_state, name="state_in", size=hidden_size, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[batch_size, uniq_max, h] state_out = layers.fc( input=pre_state, name="state_out", size=hidden_size, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[batch_size, uniq_max, h] state_adj_in = layers.matmul(adj_in, state_in) #[batch_size, uniq_max, h] state_adj_out = layers.matmul(adj_out, state_out) #[batch_size, uniq_max, h] gru_input = layers.concat([state_adj_in, state_adj_out], axis=2) gru_input = layers.reshape(x=gru_input, shape=[-1, hidden_size * 2]) gru_fc = layers.fc( input=gru_input, name="gru_fc", size=3 * hidden_size, bias_attr=False) pre_state, _, _ = fluid.layers.gru_unit( input=gru_fc, hidden=layers.reshape( x=pre_state, shape=[-1, hidden_size]), size=3 * hidden_size) final_state = pre_state seq_index = layers.reshape(seq_index, shape=[-1]) seq = layers.gather(final_state, seq_index) #[batch_size*-1(seq_max), h] last = layers.gather(final_state, last_index) #[batch_size, h] seq = layers.reshape( seq, shape=[batch_size, -1, hidden_size]) #[batch_size, -1(seq_max), h] last = layers.reshape( last, shape=[batch_size, hidden_size]) #[batch_size, h] seq_fc = layers.fc( input=seq, name="seq_fc", size=hidden_size, bias_attr=False, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[batch_size, -1(seq_max), h] last_fc = layers.fc( input=last, name="last_fc", size=hidden_size, bias_attr=False, act=None, num_flatten_dims=1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[bathc_size, h] seq_fc_t = layers.transpose( seq_fc, perm=[1, 0, 2]) #[-1(seq_max), batch_size, h] add = layers.elementwise_add( seq_fc_t, last_fc) #[-1(seq_max), batch_size, h] b = layers.create_parameter( shape=[hidden_size], dtype='float32', default_initializer=fluid.initializer.Constant(value=0.0)) #[h] add = layers.elementwise_add(add, b) #[-1(seq_max), batch_size, h] add_sigmoid = layers.sigmoid(add) #[-1(seq_max), batch_size, h] add_sigmoid = layers.transpose( add_sigmoid, perm=[1, 0, 2]) #[batch_size, -1(seq_max), h] weight = layers.fc( input=add_sigmoid, name="weight_fc", size=1, act=None, num_flatten_dims=2, bias_attr=False, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[batch_size, -1, 1] weight *= mask weight_mask = layers.elementwise_mul(seq, weight, axis=0) global_attention = layers.reduce_sum(weight_mask, dim=1) final_attention = layers.concat( [global_attention, last], axis=1) #[batch_size, 2*h] final_attention_fc = layers.fc( input=final_attention, name="fina_attention_fc", size=hidden_size, bias_attr=False, act=None, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) #[batch_size, h] all_vocab = layers.create_global_var( shape=[items_num - 1, 1], value=0, dtype="int64", persistable=True, name="all_vocab") all_emb = layers.embedding( input=all_vocab, param_attr=fluid.ParamAttr( name="emb", initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), size=[items_num, hidden_size]) #[all_vocab, h] logits = layers.matmul( x=final_attention_fc, y=all_emb, transpose_y=True) #[batch_size, all_vocab] softmax = layers.softmax_with_cross_entropy( logits=logits, label=label) #[batch_size, 1] loss = layers.reduce_mean(softmax) # [1] acc = layers.accuracy(input=logits, label=label, k=20) return loss, acc