""" tools for processing images """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import math import random import functools import numpy as np #random.seed(0) def rotate_image(img): """ rotate_image """ (h, w) = img.shape[:2] center = (w // 2, h // 2) angle = random.randint(-10, 10) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(img, M, (w, h)) return rotated def random_crop(img, size, scale=None, ratio=None): """ random_crop """ scale = [0.08, 1.0] if scale is None else scale ratio = [3. / 4., 4. / 3.] if ratio is None else ratio aspect_ratio = math.sqrt(random.uniform(*ratio)) w = 1. * aspect_ratio h = 1. / aspect_ratio bound = min((float(img.shape[1]) / img.shape[0]) / (w ** 2), (float(img.shape[0]) / img.shape[1]) / (h ** 2)) scale_max = min(scale[1], bound) scale_min = min(scale[0], bound) target_area = img.shape[0] * img.shape[1] * random.uniform(scale_min, scale_max) target_size = math.sqrt(target_area) w = int(target_size * w) h = int(target_size * h) i = random.randint(0, img.shape[0] - h) j = random.randint(0, img.shape[1] - w) img = img[i:i+h, j:j+w, :] resized = cv2.resize(img, (size, size), interpolation=cv2.INTER_LANCZOS4) return resized def distort_color(img): return img def resize_short(img, target_size): """ resize_short """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) resized = cv2.resize(img, (resized_width, resized_height), interpolation=cv2.INTER_LANCZOS4) return resized def crop_image(img, target_size, center): """ crop_image """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def process_image(sample, mode, color_jitter, rotate, crop_size=224, mean=None, std=None): """ process_image """ mean = [0.485, 0.456, 0.406] if mean is None else mean std = [0.229, 0.224, 0.225] if std is None else std image_name = sample[0] img = cv2.imread(image_name) # BGR mode, but need RGB mode if mode == 'train': if rotate: img = rotate_image(img) if crop_size > 0: img = random_crop(img, crop_size) if color_jitter: img = distort_color(img) if random.randint(0, 1) == 1: img = img[:, ::-1, :] else: if crop_size > 0: img = resize_short(img, crop_size) img = crop_image(img, target_size=crop_size, center=True) img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std if mode == 'train' or mode == 'val': return (img, sample[1]) elif mode == 'test': return (img, ) def image_mapper(**kwargs): """ image_mapper """ return functools.partial(process_image, **kwargs)