"""Infer for ICNet model.""" from __future__ import print_function import cityscape import argparse import functools import sys import os import cv2 import paddle.fluid as fluid import paddle from icnet import icnet from utils import add_arguments, print_arguments, get_feeder_data from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter from paddle.fluid.initializer import init_on_cpu import numpy as np IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32) parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('model_path', str, None, "Model path.") add_arg('images_list', str, None, "List file with images to be infered.") add_arg('images_path', str, None, "The images path.") add_arg('out_path', str, "./output", "Output path.") add_arg('use_gpu', bool, True, "Whether use GPU to test.") # yapf: enable data_shape = [3, 1024, 2048] num_classes = 19 label_colours = [ [128, 64, 128], [244, 35, 231], [69, 69, 69] # 0 = road, 1 = sidewalk, 2 = building , [102, 102, 156], [190, 153, 153], [153, 153, 153] # 3 = wall, 4 = fence, 5 = pole , [250, 170, 29], [219, 219, 0], [106, 142, 35] # 6 = traffic light, 7 = traffic sign, 8 = vegetation , [152, 250, 152], [69, 129, 180], [219, 19, 60] # 9 = terrain, 10 = sky, 11 = person , [255, 0, 0], [0, 0, 142], [0, 0, 69] # 12 = rider, 13 = car, 14 = truck , [0, 60, 100], [0, 79, 100], [0, 0, 230] # 15 = bus, 16 = train, 17 = motocycle , [119, 10, 32] ] # 18 = bicycle def color(input): """ Convert infered result to color image. """ result = [] for i in input.flatten(): result.append( [label_colours[i][2], label_colours[i][1], label_colours[i][0]]) result = np.array(result).reshape([input.shape[0], input.shape[1], 3]) return result def infer(args): data_shape = cityscape.test_data_shape() num_classes = cityscape.num_classes() # define network images = fluid.layers.data(name='image', shape=data_shape, dtype='float32') _, _, sub124_out = icnet(images, num_classes, np.array(data_shape[1:]).astype("float32")) predict = fluid.layers.resize_bilinear( sub124_out, out_shape=data_shape[1:3]) predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1]) predict = fluid.layers.reshape(predict, shape=[-1, num_classes]) _, predict = fluid.layers.topk(predict, k=1) predict = fluid.layers.reshape( predict, shape=[data_shape[1], data_shape[2], -1]) # batch_size should be 1 inference_program = fluid.default_main_program().clone(for_test=True) # prepare environment place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) assert os.path.exists(args.model_path) fluid.io.load_params(exe, args.model_path) print("loaded model from: %s" % args.model_path) sys.stdout.flush() if not os.path.isdir(args.out_path): os.makedirs(args.out_path) for line in open(args.images_list): image_file = args.images_path + "/" + line.strip() filename = os.path.basename(image_file) image = paddle.dataset.image.load_image( image_file, is_color=True).astype("float32") image -= IMG_MEAN img = paddle.dataset.image.to_chw(image)[np.newaxis, :] image_t = fluid.core.LoDTensor() image_t.set(img, place) result = exe.run(inference_program, feed={"image": image_t}, fetch_list=[predict]) cv2.imwrite(args.out_path + "/" + filename + "_result.png", color(result[0])) def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == "__main__": main()