# Copyright (c) 2018-present, Baidu, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Functions for building network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid __all__ = ["ResNet", "ResNet50", "ResNet101", "ResNet152"] # Global parameters BN_MOMENTUM = 0.9 class ResNet(): def __init__(self, layers=50, kps_num=16, test_mode=False): """ :param layers: int, the layers number which is used here :param kps_num: int, the number of keypoints in accord with the dataset :param test_mode: bool, if True, only return output heatmaps, no loss :return: loss, output heatmaps """ self.k = kps_num self.layers = layers self.test_mode = test_mode def net(self, input, target=None, target_weight=None): layers = self.layers supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format(supported_layers, layers) if layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') for block in range(len(depth)): for i in range(depth[block]): conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1) conv = fluid.layers.conv2d_transpose( input=conv, num_filters=256, filter_size=4, padding=1, stride=2, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Normal(0., 0.001)), act=None, bias_attr=False) conv = fluid.layers.batch_norm(input=conv, act='relu', momentum=BN_MOMENTUM) conv = fluid.layers.conv2d_transpose( input=conv, num_filters=256, filter_size=4, padding=1, stride=2, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Normal(0., 0.001)), act=None, bias_attr=False) conv = fluid.layers.batch_norm(input=conv, act='relu', momentum=BN_MOMENTUM) conv = fluid.layers.conv2d_transpose( input=conv, num_filters=256, filter_size=4, padding=1, stride=2, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Normal(0., 0.001)), act=None, bias_attr=False) conv = fluid.layers.batch_norm(input=conv, act='relu', momentum=BN_MOMENTUM) out = fluid.layers.conv2d( input=conv, num_filters=self.k, filter_size=1, stride=1, padding=0, act=None, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Normal(0., 0.001))) if self.test_mode: return out else: loss = self.calc_loss(out, target, target_weight) return loss, out def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Normal(0., 0.001)), act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act, momentum=BN_MOMENTUM) def shortcut(self, input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out or stride != 1: return self.conv_bn_layer(input, ch_out, 1, stride) else: return input def calc_loss(self, heatmap, target, target_weight): _, c, h, w = heatmap.shape x = fluid.layers.reshape(heatmap, (-1, self.k, h*w)) y = fluid.layers.reshape(target, (-1, self.k, h*w)) w = fluid.layers.reshape(target_weight, (-1, self.k)) x = fluid.layers.split(x, num_or_sections=self.k, dim=1) y = fluid.layers.split(y, num_or_sections=self.k, dim=1) w = fluid.layers.split(w, num_or_sections=self.k, dim=1) _list = [] for idx in range(self.k): _tmp = fluid.layers.scale(x=x[idx] - y[idx], scale=1.) _tmp = _tmp * _tmp _tmp = fluid.layers.reduce_mean(_tmp, dim=2) _list.append(_tmp * w[idx]) _loss = fluid.layers.concat(_list, axis=0) _loss = fluid.layers.reduce_mean(_loss) return 0.5 * _loss def bottleneck_block(self, input, num_filters, stride): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu') conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 4, filter_size=1, act=None) short = self.shortcut(input, num_filters * 4, stride) return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def ResNet50(): model = ResNet(layers=50) return model def ResNet101(): model = ResNet(layers=101) return model def ResNet152(): model = ResNet(layers=152) return model