#!/usr/bin/env python # -*- coding: utf-8 -*- import paddle.v2 as paddle from hsigmoid_conf import network_conf import gzip def decode_res(infer_res, dict_size): """ Inferring probabilities are orginized as a complete binary tree. The actual labels are leaves (indices are counted from class number). This function travels paths decoded from inferring results. If the probability >0.5 then go to right child, otherwise go to left child. param infer_res: inferring result param dict_size: class number return predict_lbls: actual class """ predict_lbls = [] infer_res = infer_res > 0.5 for i, probs in enumerate(infer_res): idx = 0 result = 1 while idx < len(probs): result <<= 1 if probs[idx]: result |= 1 if probs[idx]: idx = idx * 2 + 2 # right child else: idx = idx * 2 + 1 # left child predict_lbl = result - dict_size predict_lbls.append(predict_lbl) return predict_lbls def predict(batch_ins, idx_word_dict, dict_size, prediction_layer, parameters): infer_res = paddle.infer( output_layer=prediction_layer, parameters=parameters, input=batch_ins) predict_lbls = decode_res(infer_res, dict_size) predict_words = [idx_word_dict[lbl] for lbl in predict_lbls] # map to word # Ouput format: word1 word2 word3 word4 -> predict label for i, ins in enumerate(batch_ins): print(idx_word_dict[ins[0]] + ' ' + \ idx_word_dict[ins[1]] + ' ' + \ idx_word_dict[ins[2]] + ' ' + \ idx_word_dict[ins[3]] + ' ' + \ ' -> ' + predict_words[i]) def main(): paddle.init(use_gpu=False, trainer_count=1) word_dict = paddle.dataset.imikolov.build_dict(min_word_freq=2) dict_size = len(word_dict) prediction_layer = network_conf( is_train=False, hidden_size=256, embed_size=32, dict_size=dict_size) with gzip.open('./models/model_pass_00000.tar.gz') as f: parameters = paddle.parameters.Parameters.from_tar(f) idx_word_dict = dict((v, k) for k, v in word_dict.items()) batch_size = 64 batch_ins = [] ins_iter = paddle.dataset.imikolov.test(word_dict, 5) for ins in ins_iter(): batch_ins.append(ins[:-1]) if len(batch_ins) == batch_size: predict(batch_ins, idx_word_dict, dict_size, prediction_layer, parameters) batch_ins = [] if len(batch_ins) > 0: predict(batch_ins, idx_word_dict, dict_size, prediction_layer, parameters) if __name__ == '__main__': main()