# YOLOv3 目标检测 --- ## 内容 - [简介](#简介) - [快速开始](#快速开始) - [进阶使用](#进阶使用) - [FAQ](#faq) - [参考文献](#参考文献) - [版本更新](#版本更新) - [如何贡献代码](#如何贡献代码) - [作者](#作者) ## 简介 [YOLOv3](https://arxiv.org/abs/1804.02767) 是由 [Joseph Redmon](https://arxiv.org/search/cs?searchtype=author&query=Redmon%2C+J) 和 [Ali Farhadi](https://arxiv.org/search/cs?searchtype=author&query=Farhadi%2C+A) 提出的单阶段检测器, 该检测器与达到同样精度的传统目标检测方法相比,推断速度能达到接近两倍. 在我们的实现版本中使用了 [Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/abs/1902.04103v3) 中提出的图像增强和label smooth等优化方法,精度优于darknet框架的实现版本,在COCO-2017数据集上,我们达到`mAP(0.50:0.95)= 38.9`的精度,比darknet实现版本的精度(33.0)要高5.9. 同时,在推断速度方面,基于Paddle预测库的加速方法,推断速度比darknet高30%. 同时推荐用户参考[ IPython Notebook demo](https://aistudio.baidu.com/aistudio/projectDetail/122277) ## 快速开始 ### 安装 **安装[COCO-API](https://github.com/cocodataset/cocoapi):** 训练前需要首先下载[COCO-API](https://github.com/cocodataset/cocoapi): git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI # if cython is not installed pip install Cython # Install into global site-packages make install # Alternatively, if you do not have permissions or prefer # not to install the COCO API into global site-packages python2 setup.py install --user **安装[PaddlePaddle](https://github.com/PaddlePaddle/Paddle):** 在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.5或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://paddlepaddle.org/documentation/docs/zh/1.5/beginners_guide/install/index_cn.html)中的说明来更新PaddlePaddle。 ### 数据准备 **COCO数据集:** 在[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。 cd dataset/coco ./download.sh 数据目录结构如下: ``` dataset/coco/ ├── annotations │   ├── instances_train2014.json │   ├── instances_train2017.json │   ├── instances_val2014.json │   ├── instances_val2017.json | ... ├── train2017 │   ├── 000000000009.jpg │   ├── 000000580008.jpg | ... ├── val2017 │   ├── 000000000139.jpg │   ├── 000000000285.jpg | ... ``` **自定义数据集:** 用户可使用自定义的数据集,我们推荐自定义数据集使用COCO数据集格式的标注,并可通过设置`--data_dir`或修改[reader.py](./reader.py#L39)指定数据集路径。使用COCO数据集格式标注时,目录结构可参考上述COCO数据集目录结构。 ### 模型训练 **下载预训练模型:** 本示例提供DarkNet-53预训练[模型](https://paddlemodels.bj.bcebos.com/yolo/darknet53.tar.gz),该模型转换自作者提供的预训练权重[pjreddie/darknet](https://pjreddie.com/media/files/darknet53.conv.74),采用如下命令下载预训练模型: sh ./weights/download.sh 通过设置`--pretrain` 加载预训练模型。同时在fine-tune时也采用该设置加载已训练模型。 请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。 **开始训练:** 数据准备完毕后,可以通过如下的方式启动训练: python train.py \ --model_save_dir=output/ \ --pretrain=${path_to_pretrain_model} \ --data_dir=${path_to_data} \ --class_num=${category_num} - 通过设置`export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7`指定8卡GPU训练。 - 若在Windows环境下训练模型,建议设置`--use_multiprocess_reader=False`。 - 通过`--worker_num=`设置多进程数据读取器进程数,默认进程数为8,若训练机器CPU核数较少,建议设小该值。 - 可选参数见: python train.py --help **注意:** YOLOv3模型总batch size为64,这里使用8 GPUs每GPU上batch size为8来训练 **模型设置:** * 模型使用了基于COCO数据集生成的9个先验框:10x13,16x30,33x23,30x61,62x45,59x119,116x90,156x198,373x326 * YOLOv3模型中,若预测框不是该点最佳匹配框但是和任一ground truth框的重叠大于`ignore_thresh=0.7`,则忽略该预测框的目标性损失 **训练策略:** * 采用momentum优化算法训练YOLOv3,momentum=0.9。 * 学习率采用warmup算法,前4000轮学习率从0.0线性增加至0.001。在400000,450000轮时使用0.1,0.01乘子进行学习率衰减,最大训练500000轮。 * 通过设置`--syncbn=True`可以开启Synchronized batch normalization,该模式下精度会提高 **注意:** Synchronized batch normalization只能用于多GPU训练,不能用于CPU训练和单GPU训练。 下图为模型训练结果:


Train Loss

### 模型评估 模型评估是指对训练完毕的模型评估各类性能指标。本示例采用[COCO官方评估](http://cocodataset.org/#detections-eval), 用户可通过如下方式下载Paddle发布的YOLOv3[模型](https://paddlemodels.bj.bcebos.com/yolo/yolov3.tar.gz) sh ./weights/download.sh `eval.py`是评估模块的主要执行程序,调用示例如下: python eval.py \ --dataset=coco2017 \ --weights=${path_to_weights} \ --class_num=${category_num} - 通过设置`export CUDA_VISIBLE_DEVICES=0`指定单卡GPU评估。 若训练时指定`--syncbn=False`, 模型评估精度如下: | input size | mAP(IoU=0.50:0.95) | mAP(IoU=0.50) | mAP(IoU=0.75) | | :------: | :------: | :------: | :------: | | 608x608 | 37.7 | 59.8 | 40.8 | | 416x416 | 36.5 | 58.2 | 39.1 | | 320x320 | 34.1 | 55.4 | 36.3 | 若训练时指定`--syncbn=True`, 模型评估精度如下: | input size | mAP(IoU=0.50:0.95) | mAP(IoU=0.50) | mAP(IoU=0.75) | | :------: | :------: | :------: | :------: | | 608x608 | 38.9 | 61.1 | 42.0 | | 416x416 | 37.5 | 59.6 | 40.2 | | 320x320 | 34.8 | 56.4 | 36.9 | - **注意:** 评估结果基于`pycocotools`评估器,没有滤除`score < 0.05`的预测框,其他框架有此滤除操作会导致精度下降。 ### 模型推断及可视化 模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下: python infer.py \ --dataset=coco2017 \ --weights=${path_to_weights} \ --class_num=${category_num} \ --image_path=data/COCO17/val2017/ \ --image_name=000000000139.jpg \ --draw_thresh=0.5 - 通过设置`export CUDA_VISIBLE_DEVICES=0`指定单卡GPU预测。 - 推断结果显示如下,并会在`./output`目录下保存带预测框的图像 ``` Image person.jpg detect: person at [190, 101, 273, 372] score: 0.98832 dog at [63, 263, 200, 346] score: 0.97049 horse at [404, 137, 598, 366] score: 0.97305 Detect result save at ./output/person.png ``` 下图为模型可视化预测结果:


YOLOv3 预测可视化

### Benchmark 模型训练benchmark: | 数据集 | GPU | CUDA | cuDNN | batch size | 训练速度(1 GPU) | 训练速度(8 GPU) | 显存占用(1 GPU) | 显存占用(8 GPU) | | :-----: | :-: | :--: | :---: | :--------: | :-----------------: | :-----------------: | :------------: | :------------: | | COCO | Tesla P40 | 8.0 | 7.1 | 8 (per GPU) | 30.2 images/s | 59.3 images/s | 10642 MB/GPU | 10782 MB/GPU | 模型单卡推断速度: | GPU | CUDA | cuDNN | batch size | infer speed(608x608) | infer speed(416x416) | infer speed(320x320) | | :-: | :--: | :---: | :--------: | :-----: | :-----: | :-----: | | Tesla P40 | 8.0 | 7.1 | 1 | 48 ms/frame | 29 ms/frame |24 ms/frame | ### 服务部署 进行YOLOv3的服务部署,用户可以在[eval.py](./eval.py#L54)或[infer.py](./infer.py#L47)中保存可部署的推断模型,该模型可以用Paddle预测库加载和部署,参考[Paddle预测库](http://paddlepaddle.org/documentation/docs/zh/1.4/advanced_usage/deploy/index_cn.html) ## 进阶使用 ### 背景介绍 传统目标检测方法通过两阶段检测,第一阶段生成预选框,第二阶段对预选框进行分类得到类别,而YOLO将目标检测看做是对框位置和类别概率的一个单阶段回归问题,使得YOLO能达到近两倍的检测速度。而YOLOv3在YOLO的基础上引入的多尺度预测,使得YOLOv3网络对于小物体的检测精度大幅提高。 ### 模型概览 [YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示:


YOLOv3检测原理

### 模型结构 YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box,每个bounding box预测内容包括: Location(x, y, w, h)、Confidence Score和C个类别的概率,因此YOLOv3输出层的channel数为B\*(5 + C)。YOLOv3的loss函数也有三部分组成:Location误差,Confidence误差和分类误差。 YOLOv3的网络结构如下图所示:


YOLOv3网络结构

YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层和输出层组成。 1. 特征提取网络。YOLOv3使用 [DarkNet53](https://arxiv.org/abs/1612.08242)作为特征提取网络:DarkNet53 基本采用了全卷积网络,用步长为2的卷积操作替代了池化层,同时添加了 Residual 单元,避免在网络层数过深时发生梯度弥散。 2. 特征融合层。为了解决之前YOLO版本对小目标不敏感的问题,YOLOv3采用了3个不同尺度的特征图来进行目标检测,分别为13\*13,26\*26,52\*52,用来检测大、中、小三种目标。特征融合层选取 DarkNet 产出的三种尺度特征图作为输入,借鉴了FPN(feature pyramid networks)的思想,通过一系列的卷积层和上采样对各尺度的特征图进行融合。 3. 输出层。同样使用了全卷积结构,其中最后一个卷积层的卷积核个数是255:3\*(80+4+1)=255,3表示一个grid cell包含3个bounding box,4表示框的4个坐标信息,1表示Confidence Score,80表示COCO数据集中80个类别的概率。 ### 模型fine-tune 对YOLOv3进行fine-tune,用户可用`--pretrain`指定下载好的Paddle发布的YOLOv3[模型](https://paddlemodels.bj.bcebos.com/yolo/yolov3.tar.gz),并把`--class_num`设置为用户数据集的类别数。 在fine-tune时,若用户自定义数据集的类别数不等于COCO数据集的80类,则加载权重时不应加载`yolo_output`层的权重,可通过在[train.py](./train.py#L76)使用如下方式加载非`yolo_output`层的权重: ```python if cfg.pretrain: if not os.path.exists(cfg.pretrain): print("Pretrain weights not found: {}".format(cfg.pretrain)) def if_exist(var): return os.path.exists(os.path.join(cfg.pretrain, var.name)) \ and var.name.find('yolo_output') < 0 fluid.io.load_vars(exe, cfg.pretrain, predicate=if_exist) ``` 若用户自定义数据集的类别是COCO数据集类别的子集,`yolo_output`层的权重可以进行裁剪后导入。例如用户数据集有6类分别对应COCO数据集80类中的第`[3, 19, 25, 41, 58, 73]`类,可通过如下方式裁剪`yolo_output`层权重: ```python if cfg.pretrain: if not os.path.exists(cfg.pretrain): print("Pretrain weights not found: {}".format(cfg.pretrain)) def if_exist(var): return os.path.exists(os.path.join(cfg.pretrain, var.name)) fluid.io.load_vars(exe, cfg.pretrain, predicate=if_exist) cat_idxs = [3, 19, 25, 41, 58, 73] # the first 5 channels is x, y, w, h, objectness, # the following 80 channel is for 80 categories channel_idxs = np.array(range(5) + [idx + 5 for idx in cat_idxs]) # we have 3 yolo_output layers for i in range(3): # crop conv weights weights_tensor = fluid.global_scope().find_var( "yolo_output.{}.conv.weights".format(i)).get_tensor() weights = np.array(weights_tensor) # each yolo_output layer has 3 anchors, 85 channels of each anchor weights = np.concatenate(weights[channel_idxs], weights[85 + channel_idxs], weights[170 + channel_idxs]) weights_tensor.set(weights.astype('float32'), place) # crop conv bias bias_tensor = fluid.global_scope().find_var( "yolo_output.{}.conv.bias".format(i)).get_tensor() bias = np.array(bias_tensor) bias = np.concatenate(bias[channel_idxs], bias[85 + channel_idxs], bias[150 + channel_idxs]) bias_tensor.set(bias.astype('float32'), place) ``` ## FAQ **Q:** 我使用单GPU训练,训练过程中`loss=nan`,这是为什么? **A:** YOLOv3中`learning_rate=0.001`的设置是针对总batch size为64的情况,若用户的batch size小于该值,建议调小学习率。 **Q:** 我训练YOLOv3速度比较慢,要怎么提速? **A:** YOLOv3的数据增强比较复杂,速度比较慢,可通过在[reader.py](./reader.py#L284)中增加数据读取的进程数来提速。若用户是进行fine-tune,也可将`--no_mixup_iter`设置大于`--max_iter`的值来禁用mixup提升速度。 **Q:** 我使用YOLOv3训练两个类别的数据集,训练`loss=nan`或推断结果不符合预期,这是为什么? **A:** `--label_smooth`参数会把所有正例的目标值设置为`1-1/class_num`,负例的目标值设为`1/class_num`,当`class_num`较小时,这个操作影响过大,可能会出现`loss=nan`或者训练结果错误,类别数较小时建议设置`--label_smooth=False`。若使用Paddle Fluid v1.5及以上版本,我们在C++代码中对这种情况作了保护,设置`--label_smooth=True`也不会出现这些问题。 ## 参考文献 - [You Only Look Once: Unified, Real-Time Object Detection](https://arxiv.org/abs/1506.02640v5), Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. - [YOLOv3: An Incremental Improvement](https://arxiv.org/abs/1804.02767v1), Joseph Redmon, Ali Farhadi. - [Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/abs/1902.04103v3), Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Junyuan Xie, Mu Li. ## 版本更新 - 1/2019, 新增YOLOv3模型。 - 4/2019, 新增YOLOv3模型Synchronized batch normalization模式。 ## 如何贡献代码 如果你可以修复某个issue或者增加一个新功能,欢迎给我们提交PR。如果对应的PR被接受了,我们将根据贡献的质量和难度进行打分(0-5分,越高越好)。如果你累计获得了10分,可以联系我们获得面试机会或者为你写推荐信。 ## 作者 - [heavengate](https://github.com/heavengate) - [tink2123](https://github.com/tink2123)