import paddle.fluid as fluid import math def ctr_xdeepfm_model(embedding_size, num_field, num_feat, layer_sizes_dnn, act, reg, layer_sizes_cin): init_value_ = 0.1 initer = fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_) raw_feat_idx = fluid.layers.data( name='feat_idx', shape=[num_field], dtype='int64') raw_feat_value = fluid.layers.data( name='feat_value', shape=[num_field], dtype='float32') label = fluid.layers.data( name='label', shape=[1], dtype='float32') # None * 1 feat_idx = fluid.layers.reshape(raw_feat_idx, [-1, num_field, 1]) # None * num_field * 1 feat_value = fluid.layers.reshape( raw_feat_value, [-1, num_field, 1]) # None * num_field * 1 feat_embeddings = fluid.layers.embedding( input=feat_idx, dtype='float32', size=[num_feat + 1, embedding_size], padding_idx=0, param_attr=fluid.ParamAttr( initializer=initer)) # None * num_field * embedding_size feat_embeddings = feat_embeddings * feat_value # None * num_field * embedding_size # -------------------- linear -------------------- weights_linear = fluid.layers.embedding( input=feat_idx, dtype='float32', size=[num_feat + 1, 1], padding_idx=0, param_attr=fluid.ParamAttr(initializer=initer)) # None * num_field * 1 b_linear = fluid.layers.create_parameter( shape=[1], dtype='float32', default_initializer=fluid.initializer.ConstantInitializer(value=0)) y_linear = fluid.layers.reduce_sum( (weights_linear * feat_value), 1) + b_linear # -------------------- CIN -------------------- Xs = [feat_embeddings] last_s = num_field for s in layer_sizes_cin: # calculate Z^(k+1) with X^k and X^0 X_0 = fluid.layers.reshape( fluid.layers.transpose(Xs[0], [0, 2, 1]), [-1, embedding_size, num_field, 1]) # None, embedding_size, num_field, 1 X_k = fluid.layers.reshape( fluid.layers.transpose(Xs[-1], [0, 2, 1]), [-1, embedding_size, 1, last_s]) # None, embedding_size, 1, last_s Z_k_1 = fluid.layers.matmul( X_0, X_k) # None, embedding_size, num_field, last_s # compresses Z^(k+1) to X^(k+1) Z_k_1 = fluid.layers.reshape(Z_k_1, [ -1, embedding_size, last_s * num_field ]) # None, embedding_size, last_s*num_field Z_k_1 = fluid.layers.transpose( Z_k_1, [0, 2, 1]) # None, s*num_field, embedding_size Z_k_1 = fluid.layers.reshape( Z_k_1, [-1, last_s * num_field, 1, embedding_size] ) # None, last_s*num_field, 1, embedding_size (None, channal_in, h, w) X_k_1 = fluid.layers.conv2d( Z_k_1, num_filters=s, filter_size=(1, 1), act=None, bias_attr=False, param_attr=fluid.ParamAttr( initializer=initer)) # None, s, 1, embedding_size X_k_1 = fluid.layers.reshape( X_k_1, [-1, s, embedding_size]) # None, s, embedding_size Xs.append(X_k_1) last_s = s # sum pooling y_cin = fluid.layers.concat(Xs[1:], 1) # None, (num_field++), embedding_size y_cin = fluid.layers.reduce_sum(y_cin, -1) # None, (num_field++) y_cin = fluid.layers.fc(input=y_cin, size=1, act=None, param_attr=fluid.ParamAttr(initializer=initer), bias_attr=None) y_cin = fluid.layers.reduce_sum(y_cin, dim=-1, keep_dim=True) # -------------------- DNN -------------------- y_dnn = fluid.layers.reshape(feat_embeddings, [-1, num_field * embedding_size]) for s in layer_sizes_dnn: y_dnn = fluid.layers.fc(input=y_dnn, size=s, act=act, param_attr=fluid.ParamAttr(initializer=initer), bias_attr=None) y_dnn = fluid.layers.fc(input=y_dnn, size=1, act=None, param_attr=fluid.ParamAttr(initializer=initer), bias_attr=None) # ------------------- xDeepFM ------------------ predict = fluid.layers.sigmoid(y_linear + y_cin + y_dnn) cost = fluid.layers.log_loss(input=predict, label=label, epsilon=0.0000001) batch_cost = fluid.layers.reduce_mean(cost) # for auc predict_2d = fluid.layers.concat([1 - predict, predict], 1) label_int = fluid.layers.cast(label, 'int64') auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict_2d, label=label_int, slide_steps=0) return batch_cost, auc_var, [raw_feat_idx, raw_feat_value, label]