import logging import numpy as np import pickle import os import paddle import paddle.fluid as fluid from args import parse_args from criteo_reader import CriteoDataset import network_conf logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger('fluid') logger.setLevel(logging.INFO) def infer(): args = parse_args() if args.use_gpu == 1: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() inference_scope = fluid.Scope() test_files = [ args.test_data_dir + '/' + x for x in os.listdir(args.test_data_dir) ] criteo_dataset = CriteoDataset() test_reader = paddle.batch( criteo_dataset.test(test_files), batch_size=args.batch_size) startup_program = fluid.framework.Program() test_program = fluid.framework.Program() cur_model_path = args.model_output_dir + '/epoch_' + args.test_epoch with fluid.scope_guard(inference_scope): with fluid.framework.program_guard(test_program, startup_program): loss, auc, data_list = eval('network_conf.' + args.model_name)( args.embedding_size, args.num_field, args.num_feat, args.layer_sizes_dnn, args.act, args.reg, args.layer_sizes_cin) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=data_list, place=place) fluid.io.load_persistables( executor=exe, dirname=cur_model_path, main_program=fluid.default_main_program()) auc_states_names = ['_generated_var_2', '_generated_var_3'] for name in auc_states_names: param = inference_scope.var(name).get_tensor() param_array = np.zeros(param._get_dims()).astype("int64") param.set(param_array, place) loss_all = 0 num_ins = 0 for batch_id, data_test in enumerate(test_reader()): loss_val, auc_val = exe.run(test_program, feed=feeder.feed(data_test), fetch_list=[loss.name, auc.name]) num_ins += len(data_test) loss_all += loss_val * len(data_test) logger.info('TEST --> batch: {} loss: {} auc_val: {}'.format( batch_id, loss_all / num_ins, auc_val)) print( 'The last log info is the total Logloss and AUC for all test data. ' ) if __name__ == '__main__': infer()