import os import gzip import argparse import numpy as np from PIL import Image import paddle.v2 as paddle import reader import vgg import resnet import alexnet import googlenet import inception_v4 import inception_resnet_v2 import se_resnext DATA_DIM = 3 * 224 * 224 # Use 3 * 331 * 331 or 3 * 299 * 299 for Inception-ResNet-v2. CLASS_DIM = 102 def main(): # parse the argument parser = argparse.ArgumentParser() parser.add_argument( 'data_list', help='The path of data list file, which consists of one image path per line' ) parser.add_argument( 'model', help='The model for image classification', choices=[ 'alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet', 'inception-resnet-v2', 'inception_v4', 'se-resnext' ]) parser.add_argument( 'params_path', help='The file which stores the parameters') args = parser.parse_args() # PaddlePaddle init paddle.init(use_gpu=True, trainer_count=1) image = paddle.layer.data( name="image", type=paddle.data_type.dense_vector(DATA_DIM)) if args.model == 'alexnet': out = alexnet.alexnet(image, class_dim=CLASS_DIM) elif args.model == 'vgg13': out = vgg.vgg13(image, class_dim=CLASS_DIM) elif args.model == 'vgg16': out = vgg.vgg16(image, class_dim=CLASS_DIM) elif args.model == 'vgg19': out = vgg.vgg19(image, class_dim=CLASS_DIM) elif args.model == 'resnet': out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM) elif args.model == 'googlenet': out, _, _ = googlenet.googlenet(image, class_dim=CLASS_DIM) elif args.model == 'inception-resnet-v2': assert DATA_DIM == 3 * 331 * 331 or DATA_DIM == 3 * 299 * 299 out = inception_resnet_v2.inception_resnet_v2( image, class_dim=CLASS_DIM, dropout_rate=0.5, data_dim=DATA_DIM) elif args.model == 'inception_v4': out = inception_v4.inception_v4(image, class_dim=CLASS_DIM) elif args.model == 'se-resnext': out = se_resnext.se_resnext50(image, class_dim=CLASS_DIM) # load parameters with gzip.open(args.params_path, 'r') as f: parameters = paddle.parameters.Parameters.from_tar(f) file_list = [line.strip() for line in open(args.data_list)] test_data = [(paddle.image.load_and_transform(image_file, 256, 224, False) .flatten().astype('float32'), ) for image_file in file_list] probs = paddle.infer( output_layer=out, parameters=parameters, input=test_data) lab = np.argsort(-probs) for file_name, result in zip(file_list, lab): print "Label of %s is: %d" % (file_name, result[0]) if __name__ == '__main__': main()