# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def convert_example(example, tokenizer, is_test=False): """ Builds model inputs from a sequence for sequence classification tasks. It use `jieba.cut` to tokenize text. Args: example(obj:`list[str]`): List of input data, containing text and label if it have label. tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string. is_test(obj:`False`, defaults to `False`): Whether the example contains label or not. Returns: query_ids(obj:`list[int]`): The list of query ids. title_ids(obj:`list[int]`): The list of title ids. query_seq_len(obj:`int`): The input sequence query length. title_seq_len(obj:`int`): The input sequence title length. label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test. """ query, title = example[0], example[1] query_ids = np.array(tokenizer.encode(query), dtype="int64") query_seq_len = np.array(len(query_ids), dtype="int64") title_ids = np.array(tokenizer.encode(title), dtype="int64") title_seq_len = np.array(len(title_ids), dtype="int64") if not is_test: label = np.array(example[-1], dtype="int64") return query_ids, title_ids, query_seq_len, title_seq_len, label else: return query_ids, title_ids, query_seq_len, title_seq_len def preprocess_prediction_data(data, tokenizer): """ It process the prediction data as the format used as training. Args: data (obj:`List[List[str, str]]`): The prediction data whose each element is a text pair. Each text will be tokenized by jieba.lcut() function. tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string. Returns: examples (obj:`list`): The processed data whose each element is a `list` object, which contains - query_ids(obj:`list[int]`): The list of query ids. - title_ids(obj:`list[int]`): The list of title ids. - query_seq_len(obj:`int`): The input sequence query length. - title_seq_len(obj:`int`): The input sequence title length. """ examples = [] for query, title in data: query_ids = tokenizer.encode(query) title_ids = tokenizer.encode(title) examples.append([query_ids, title_ids, len(query_ids), len(title_ids)]) return examples