# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import argparse import paddle import paddle.nn.functional as F import paddlenlp as ppnlp from paddlenlp.data import JiebaTokenizer, Pad, Stack, Tuple, Vocab from utils import preprocess_prediction_data # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--use_gpu", type=eval, default=False, help="Whether use GPU for training, input should be True or False") parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.") parser.add_argument("--vocab_path", type=str, default="./simnet_word_dict.txt", help="The path to vocabulary.") parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?") parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.") args = parser.parse_args() # yapf: enable def predict(model, data, label_map, batch_size=1, pad_token_id=0): """ Predicts the data labels. Args: model (obj:`paddle.nn.Layer`): A model to classify texts. data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object. A Example object contains `text`(word_ids) and `seq_len`(sequence length). label_map(obj:`dict`): The label id (key) to label str (value) map. batch_size(obj:`int`, defaults to 1): The number of batch. pad_token_id(obj:`int`, optional, defaults to 0): The pad token index. Returns: results(obj:`dict`): All the predictions labels. """ # Seperates data into some batches. batches = [ data[idx:idx + batch_size] for idx in range(0, len(data), batch_size) ] batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=pad_token_id), # query_ids Pad(axis=0, pad_val=pad_token_id), # title_ids Stack(dtype="int64"), # query_seq_lens Stack(dtype="int64"), # title_seq_lens ): [data for data in fn(samples)] results = [] model.eval() for batch in batches: query_ids, title_ids, query_seq_lens, title_seq_lens = batchify_fn( batch) query_ids = paddle.to_tensor(query_ids) title_ids = paddle.to_tensor(title_ids) query_seq_lens = paddle.to_tensor(query_seq_lens) title_seq_lens = paddle.to_tensor(title_seq_lens) logits = model(query_ids, title_ids, query_seq_lens, title_seq_lens) probs = F.softmax(logits, axis=1) idx = paddle.argmax(probs, axis=1).numpy() idx = idx.tolist() labels = [label_map[i] for i in idx] results.extend(labels) return results if __name__ == "__main__": paddle.set_device("gpu") if args.use_gpu else paddle.set_device("cpu") # Loads vocab. vocab = Vocab.load_vocabulary( args.vocab_path, unk_token='[UNK]', pad_token='[PAD]') tokenizer = JiebaTokenizer(vocab) label_map = {0: 'dissimilar', 1: 'similar'} # Constructs the newtork. model = ppnlp.models.SimNet( network=args.network, vocab_size=len(vocab), num_classes=len(label_map)) # Loads model parameters. state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) # Firstly pre-processing prediction data and then do predict. data = [ ['世界上什么东西最小', '世界上什么东西最小?'], ['光眼睛大就好看吗', '眼睛好看吗?'], ['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'], ] examples = preprocess_prediction_data(data, tokenizer) results = predict( model, examples, label_map=label_map, batch_size=args.batch_size, pad_token_id=vocab.token_to_idx.get('[PAD]', 0)) for idx, text in enumerate(data): print('Data: {} \t Label: {}'.format(text, results[idx]))