# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import paddle import paddlenlp as ppnlp from paddlenlp.data import Vocab # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--vocab_path", type=str, default="./senta_word_dict.txt", help="The path to vocabulary.") parser.add_argument('--network', type=str, default="bilstm", help="Which network you would like to choose bow, lstm, bilstm, gru, bigru, rnn, birnn, bilstm_attn, cnn and textcnn?") parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.") parser.add_argument("--output_path", type=str, default='./static_graph_params', help="The path of model parameter in static graph to be saved.") args = parser.parse_args() # yapf: enable def main(): # Load vocab. vocab = Vocab.load_vocabulary(args.vocab_path) label_map = {0: 'negative', 1: 'positive'} # Construct the newtork. model = ppnlp.models.Senta( network=args.network, vocab_size=len(vocab), num_classes=len(label_map)) # Load model parameters. state_dict = paddle.load(args.params_path) model.set_dict(state_dict) model.eval() inputs = [paddle.static.InputSpec(shape=[None, None], dtype="int64")] # Convert to static graph with specific input description if args.network in [ "lstm", "bilstm", "gru", "bigru", "rnn", "birnn", "bilstm_attn" ]: inputs.append(paddle.static.InputSpec( shape=[None], dtype="int64")) # seq_len model = paddle.jit.to_static(model, input_spec=inputs) # Save in static graph model. paddle.jit.save(model, args.output_path) if __name__ == "__main__": main()