from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import numpy as np import argparse import time import paddle.fluid as fluid import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_splice as trans_splice import data_utils.async_data_reader as reader from decoder.post_decode_faster import Decoder from data_utils.util import lodtensor_to_ndarray from model_utils.model import stacked_lstmp_model from data_utils.util import split_infer_result def parse_args(): parser = argparse.ArgumentParser("Run inference by using checkpoint.") parser.add_argument( '--batch_size', type=int, default=32, help='The sequence number of a batch data. (default: %(default)d)') parser.add_argument( '--minimum_batch_size', type=int, default=1, help='The minimum sequence number of a batch data. ' '(default: %(default)d)') parser.add_argument( '--frame_dim', type=int, default=120 * 11, help='Frame dimension of feature data. (default: %(default)d)') parser.add_argument( '--stacked_num', type=int, default=5, help='Number of lstmp layers to stack. (default: %(default)d)') parser.add_argument( '--proj_dim', type=int, default=512, help='Project size of lstmp unit. (default: %(default)d)') parser.add_argument( '--hidden_dim', type=int, default=1024, help='Hidden size of lstmp unit. (default: %(default)d)') parser.add_argument( '--class_num', type=int, default=1749, help='Number of classes in label. (default: %(default)d)') parser.add_argument( '--learning_rate', type=float, default=0.00016, help='Learning rate used to train. (default: %(default)f)') parser.add_argument( '--device', type=str, default='GPU', choices=['CPU', 'GPU'], help='The device type. (default: %(default)s)') parser.add_argument( '--parallel', action='store_true', help='If set, run in parallel.') parser.add_argument( '--mean_var', type=str, default='data/global_mean_var_search26kHr', help="The path for feature's global mean and variance. " "(default: %(default)s)") parser.add_argument( '--infer_feature_lst', type=str, default='data/infer_feature.lst', help='The feature list path for inference. (default: %(default)s)') parser.add_argument( '--infer_label_lst', type=str, default='data/infer_label.lst', help='The label list path for inference. (default: %(default)s)') parser.add_argument( '--checkpoint', type=str, default='./checkpoint', help="The checkpoint path to init model. (default: %(default)s)") parser.add_argument( '--vocabulary', type=str, default='./decoder/graph/words.txt', help="The path to vocabulary. (default: %(default)s)") parser.add_argument( '--graphs', type=str, default='./decoder/graph/TLG.fst', help="The path to TLG graphs for decoding. (default: %(default)s)") parser.add_argument( '--log_prior', type=str, default="./decoder/logprior", help="The log prior probs for training data. (default: %(default)s)") args = parser.parse_args() return args def print_arguments(args): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') def infer_from_ckpt(args): """Inference by using checkpoint.""" if not os.path.exists(args.checkpoint): raise IOError("Invalid checkpoint!") prediction, avg_cost, accuracy = stacked_lstmp_model( frame_dim=args.frame_dim, hidden_dim=args.hidden_dim, proj_dim=args.proj_dim, stacked_num=args.stacked_num, class_num=args.class_num, parallel=args.parallel) infer_program = fluid.default_main_program().clone() optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) optimizer.minimize(avg_cost) place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) # load checkpoint. fluid.io.load_persistables(exe, args.checkpoint) ltrans = [ trans_add_delta.TransAddDelta(2, 2), trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), trans_splice.TransSplice() ] feature_t = fluid.LoDTensor() label_t = fluid.LoDTensor() # infer data reader infer_data_reader = reader.AsyncDataReader(args.infer_feature_lst, args.infer_label_lst) infer_data_reader.set_transformers(ltrans) infer_costs, infer_accs = [], [] for batch_id, batch_data in enumerate( infer_data_reader.batch_iterator(args.batch_size, args.minimum_batch_size)): # load_data (features, labels, lod) = batch_data feature_t.set(features.ndarray, place) feature_t.set_lod([lod.ndarray]) label_t.set(labels.ndarray, place) label_t.set_lod([lod.ndarray]) infer_data_reader.recycle(features, labels, lod) results = exe.run(infer_program, feed={"feature": feature_t, "label": label_t}, fetch_list=[prediction, avg_cost, accuracy], return_numpy=False) infer_costs.append(lodtensor_to_ndarray(results[1])[0]) infer_accs.append(lodtensor_to_ndarray(results[2])[0]) probs, lod = lodtensor_to_ndarray(results[0]) infer_batch = split_infer_result(probs, lod) for index, sample in enumerate(infer_batch): key = "utter#%d" % (batch_id * args.batch_size + index) print(key, ": ", decoder.decode(key, sample), "\n") print(np.mean(infer_costs), np.mean(infer_accs)) if __name__ == '__main__': args = parse_args() print_arguments(args) infer_from_ckpt(args)