# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np import argparse import collections import paddle import paddle.fluid as fluid import dgu.reader as reader from dgu_net import create_net import dgu.define_paradigm as define_paradigm import dgu.define_predict_pack as define_predict_pack from dgu.utils.configure import PDConfig from dgu.utils.input_field import InputField from dgu.utils.model_check import check_cuda import dgu.utils.save_load_io as save_load_io def do_predict(args): """predict function""" task_name = args.task_name.lower() paradigm_inst = define_paradigm.Paradigm(task_name) pred_inst = define_predict_pack.DefinePredict() pred_func = getattr(pred_inst, pred_inst.task_map[task_name]) processors = { 'udc': reader.UDCProcessor, 'swda': reader.SWDAProcessor, 'mrda': reader.MRDAProcessor, 'atis_slot': reader.ATISSlotProcessor, 'atis_intent': reader.ATISIntentProcessor, 'dstc2': reader.DSTC2Processor, } test_prog = fluid.default_main_program() startup_prog = fluid.default_startup_program() with fluid.program_guard(test_prog, startup_prog): test_prog.random_seed = args.random_seed startup_prog.random_seed = args.random_seed with fluid.unique_name.guard(): # define inputs of the network num_labels = len(processors[task_name].get_labels()) src_ids = fluid.layers.data( name='src_ids', shape=[args.max_seq_len, 1], dtype='int64') pos_ids = fluid.layers.data( name='pos_ids', shape=[args.max_seq_len, 1], dtype='int64') sent_ids = fluid.layers.data( name='sent_ids', shape=[args.max_seq_len, 1], dtype='int64') input_mask = fluid.layers.data( name='input_mask', shape=[args.max_seq_len, 1], dtype='float32') if args.task_name == 'atis_slot': labels = fluid.layers.data( name='labels', shape=[args.max_seq_len], dtype='int64') elif args.task_name in ['dstc2', 'dstc2_asr', 'multi-woz']: labels = fluid.layers.data( name='labels', shape=[num_labels], dtype='int64') else: labels = fluid.layers.data( name='labels', shape=[1], dtype='int64') input_inst = [src_ids, pos_ids, sent_ids, input_mask, labels] input_field = InputField(input_inst) data_reader = fluid.io.PyReader(feed_list=input_inst, capacity=4, iterable=False) results = create_net( is_training=False, model_input=input_field, num_labels=num_labels, paradigm_inst=paradigm_inst, args=args) probs = results.get("probs", None) probs.persistable = True fetch_list = [probs.name] #for_test is True if change the is_test attribute of operators to True test_prog = test_prog.clone(for_test=True) if args.use_cuda: place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) assert (args.init_from_params) or (args.init_from_pretrain_model) if args.init_from_params: save_load_io.init_from_params(args, exe, test_prog) if args.init_from_pretrain_model: save_load_io.init_from_pretrain_model(args, exe, test_prog) compiled_test_prog = fluid.CompiledProgram(test_prog) processor = processors[task_name](data_dir=args.data_dir, vocab_path=args.vocab_path, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, task_name=task_name, random_seed=args.random_seed) batch_generator = processor.data_generator( batch_size=args.batch_size, phase='test', shuffle=False) data_reader.decorate_batch_generator(batch_generator) data_reader.start() all_results = [] while True: try: results = exe.run(compiled_test_prog, fetch_list=fetch_list) all_results.extend(results[0]) except fluid.core.EOFException: data_reader.reset() break np.set_printoptions(precision=4, suppress=True) print("Write the predicted results into the output_prediction_file") with open(args.output_prediction_file, 'w') as fw: if task_name not in ['atis_slot']: for index, result in enumerate(all_results): tags = pred_func(result) fw.write("%s\t%s\n" % (index, tags)) else: tags = pred_func(all_results, args.max_seq_len) for index, tag in enumerate(tags): fw.write("%s\t%s\n" % (index, tag)) if __name__ == "__main__": args = PDConfig(yaml_file="./data/config/dgu.yaml") args.build() args.Print() check_cuda(args.use_cuda) do_predict(args)