#!/usr/bin/env bash # download pretrain model root_url="http://paddle-imagenet-models-name.bj.bcebos.com" MobileNetV1="MobileNetV1_pretrained.zip" ResNet50="ResNet50_pretrained.zip" pretrain_dir='./pretrain' if [ ! -d ${pretrain_dir} ]; then mkdir ${pretrain_dir} fi cd ${pretrain_dir} if [ ! -f ${MobileNetV1} ]; then wget ${root_url}/${MobileNetV1} unzip ${MobileNetV1} fi if [ ! -f ${ResNet50} ]; then wget ${root_url}/${ResNet50} unzip ${ResNet50} fi cd - # for distillation #-------------------- export CUDA_VISIBLE_DEVICES=0 python compress.py \ --model "MobileNet" \ --teacher_model "ResNet50" \ --teacher_pretrained_model ./pretrain/ResNet50_pretrained \ --compress_config ./configs/mobilenetv1_resnet50_distillation.yaml # for sensitivity filter pruning #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_sen.yaml # for uniform filter pruning #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_uniform.yaml # for quantization #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--batch_size 64 \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/quantization.yaml