# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid from ppdet.core.workspace import register __all__ = ['RetinaNet'] @register class RetinaNet(object): """ RetinaNet architecture, see https://arxiv.org/abs/1708.02002 Args: backbone (object): backbone instance fpn (object): feature pyramid network instance retina_head (object): `RetinaHead` instance """ __category__ = 'architecture' __inject__ = ['backbone', 'fpn', 'retina_head'] def __init__(self, backbone, fpn, retina_head): super(RetinaNet, self).__init__() self.backbone = backbone self.fpn = fpn self.retina_head = retina_head def build(self, feed_vars, mode='train'): im = feed_vars['image'] im_info = feed_vars['im_info'] if mode == 'train': gt_box = feed_vars['gt_box'] gt_label = feed_vars['gt_label'] is_crowd = feed_vars['is_crowd'] # backbone body_feats = self.backbone(im) # FPN body_feats, spatial_scale = self.fpn.get_output(body_feats) # retinanet head if mode == 'train': loss = self.retina_head.get_loss(body_feats, spatial_scale, im_info, gt_box, gt_label, is_crowd) total_loss = fluid.layers.sum(list(loss.values())) loss.update({'loss': total_loss}) return loss else: pred = self.retina_head.get_prediction(body_feats, spatial_scale, im_info) return pred def train(self, feed_vars): return self.build(feed_vars, 'train') def eval(self, feed_vars): return self.build(feed_vars, 'test') def test(self, feed_vars): return self.build(feed_vars, 'test')