# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import paddle.fluid as fluid def nccl2_prepare(trainer_id, startup_prog, main_prog): config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=os.environ.get('PADDLE_TRAINER_ENDPOINTS'), current_endpoint=os.environ.get('PADDLE_CURRENT_ENDPOINT'), startup_program=startup_prog, program=main_prog) def prepare_for_multi_process(exe, build_strategy, train_prog): # prepare for multi-process trainer_id = int(os.environ.get('PADDLE_TRAINER_ID', 0)) num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) if num_trainers < 2: return print("PADDLE_TRAINERS_NUM", num_trainers) print("PADDLE_TRAINER_ID", trainer_id) build_strategy.num_trainers = num_trainers build_strategy.trainer_id = trainer_id # NOTE(zcd): use multi processes to train the model, # and each process use one GPU card. startup_prog = fluid.Program() nccl2_prepare(trainer_id, startup_prog, train_prog) # the startup_prog are run two times, but it doesn't matter. exe.run(startup_prog)