# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import itertools import logging import os import io import random import time from functools import partial from concurrent.futures import ThreadPoolExecutor import numpy as np import paddle import paddle.distributed as dist from paddle.io import DataLoader, Dataset from paddlenlp.transformers import ElectraForTotalPretraining, ElectraModel, ElectraPretrainingCriterion from paddlenlp.transformers import ElectraDiscriminator, ElectraGenerator from paddlenlp.transformers import ElectraTokenizer FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) MODEL_CLASSES = {"electra": (ElectraForTotalPretraining, ElectraTokenizer), } def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_type", default="electra", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default="electra-small", type=str, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--input_dir", default=None, type=str, required=True, help="The input directory where the data will be read from.", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="max length of each sequence") parser.add_argument( "--mask_prob", default=0.15, type=float, help="the probability of one word to be mask") parser.add_argument( "--train_batch_size", default=96, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--eval_batch_size", default=96, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument( "--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--num_train_epochs", default=4, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=10000, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--logging_steps", type=int, default=100, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=1000, help="Save checkpoint every X updates steps.") parser.add_argument( "--init_from_ckpt", type=bool, default=False, help="Whether to load model checkpoint. if True, args.model_name_or_path must be dir store ckpt" ) parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--eager_run", type=bool, default=True, help="Use dygraph mode.") parser.add_argument( "--n_gpu", type=int, default=1, help="number of gpus to use, 0 for cpu.") args = parser.parse_args() return args def set_seed(args): random.seed(args.seed + paddle.distributed.get_rank()) np.random.seed(args.seed + paddle.distributed.get_rank()) paddle.seed(args.seed + paddle.distributed.get_rank()) class WorkerInitObj(object): def __init__(self, seed): self.seed = seed def __call__(self, id): np.random.seed(seed=self.seed + id) random.seed(self.seed + id) class BookCorpus(paddle.io.Dataset): """ https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html Args: data_path (:obj:`str`) : The dataset file path, which contains train.tsv, dev.tsv and test.tsv. tokenizer (:obj:`class PretrainedTokenizer`) : The tokenizer to split word and convert word to id. max_seq_length (:obj:`int`) : max length for each sequence. mode (:obj:`str`, `optional`, defaults to `train`): It identifies the dataset mode (train, test or dev). """ def __init__( self, data_path, tokenizer, max_seq_length, mode='train', ): if mode == 'train': data_file = 'train.data' elif mode == 'test': data_file = 'test.data' else: data_file = 'dev.data' self.data_file = os.path.join(data_path, data_file) self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.raw_examples = self._read_file(self.data_file) def _read_file(self, input_file): """ Reads a text file. Args: input_file (:obj:`str`) : The file to be read. Returns: examples (:obj:`list`): All the input data. """ if not os.path.exists(input_file): raise RuntimeError("The file {} is not found.".format(input_file)) else: with io.open(input_file, "r", encoding="UTF-8") as f: examples = [] for line in f.read().splitlines(): if (len(line) > 0 and not line.isspace()): tokens = self.tokenizer(line) ids = self.tokenizer.convert_tokens_to_ids(tokens) example = self.truncation_ids(ids, self.max_seq_length) examples.append(example) return examples def truncation_ids(self, ids, max_seq_length): if len(ids) <= (max_seq_length - 2): return ids else: return ids[:(max_seq_length - 2)] def __getitem__(self, idx): return self.raw_examples[idx] def __len__(self): return len(self.raw_examples) class DataCollatorForElectra(object): """ pads, gets batch of tensors and preprocesses batches for masked language modeling when dataloader num_worker > 0, this collator may trigger some bugs, for safe, be sure dataloader num_worker=0 """ def __init__(self, tokenizer, max_seq_length, mlm=True, mlm_probability=0.15): self.tokenizer = tokenizer self.max_seq_length = max_seq_length self.mlm = True self.mlm_probability = mlm_probability def __call__(self, examples): if self.mlm: inputs, raw_inputs, labels = self.mask_tokens(examples) return inputs, raw_inputs, labels else: raw_inputs, _ = self.add_special_tokens_and_set_maskprob( examples, True, self.max_seq_length) raw_inputs = self.tensorize_batch(raw_inputs, "int64") inputs = raw_inputs.clone().detach() labels = raw_inputs.clone().detach() if self.tokenizer.pad_token is not None: pad_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.pad_token) labels[labels == pad_token_id] = -100 return batch, raw_inputs, labels def tensorize_batch(self, examples, dtype): if isinstance(examples[0], (list, tuple)): examples = [paddle.to_tensor(e, dtype=dtype) for e in examples] length_of_first = examples[0].shape[0] are_tensors_same_length = all(x.shape[0] == length_of_first for x in examples) if are_tensors_same_length: return paddle.stack(examples, axis=0) else: raise ValueError( "the tensor in examples not have same shape, please check input examples" ) def add_special_tokens_and_set_maskprob(self, inputs, truncation, max_seq_length): sep_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.sep_token) pad_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.pad_token) cls_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.cls_token) full_inputs = [] full_maskprob = [] max_length = 0 for ids in inputs: if len(ids) > max_length: max_length = len(ids) max_length = min(max_length + 2, max_seq_length) for ids in inputs: if len(ids) <= (max_length - 2): padding_num = max_length - len(ids) - 2 full_inputs.append([cls_token_id] + ids + [sep_token_id] + ( [pad_token_id] * padding_num)) full_maskprob.append([0] + ([self.mlm_probability] * len(ids)) + [0] + ([0] * padding_num)) else: if truncation: full_inputs.append([cls_token_id] + ids[:(max_length - 2)] + [sep_token_id]) full_maskprob.append([0] + ([self.mlm_probability] * ( max_length - 2)) + [0]) else: full_inputs.append([cls_token_id] + ids + [sep_token_id]) full_maskprob.append([0] + ([self.mlm_probability] * len( ids)) + [0]) return full_inputs, full_maskprob def mask_tokens(self, examples): if self.tokenizer.mask_token is None: raise ValueError( "the tokenizer does not have mask_token, please check!") mask_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.mask_token) raw_inputs, probability_matrix = self.add_special_tokens_and_set_maskprob( examples, True, self.max_seq_length) raw_inputs = self.tensorize_batch(raw_inputs, "int64") probability_matrix = self.tensorize_batch(probability_matrix, "float32") inputs = raw_inputs.clone() labels = raw_inputs.clone() total_indices = paddle.bernoulli(probability_matrix).astype("bool") unuse_labels = paddle.full(labels.shape, -100).astype("int64") labels = paddle.where(total_indices, labels, unuse_labels) # 80% MASK indices_mask = paddle.bernoulli(paddle.full(labels.shape, 0.8)).astype( "bool").logical_and(total_indices) masked_inputs = paddle.full(inputs.shape, mask_token_id).astype("int64") inputs = paddle.where(indices_mask, masked_inputs, inputs) # 10% Random indices_random = paddle.bernoulli(paddle.full( labels.shape, 0.5)).astype("bool").logical_and( total_indices).logical_and(indices_mask.logical_not()) random_words = paddle.randint( low=0, high=self.tokenizer.vocab_size, shape=labels.shape, dtype="int64") inputs = paddle.where(indices_random, random_words, inputs) # 10% Original return inputs, raw_inputs, labels def create_dataloader(dataset, mode='train', batch_size=1, use_gpu=True, data_collator=None): """ Creats dataloader. Args: dataset(obj:`paddle.io.Dataset`): Dataset instance. mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly. batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch. use_gpu(obj:`bool`, optional, defaults to obj:`True`): Whether to use gpu to run. Returns: dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches. """ #print("%s.data has batch_size : %s" % (mode, batch_size)) if mode == 'train' and use_gpu: sampler = paddle.io.DistributedBatchSampler( dataset=dataset, batch_size=batch_size, shuffle=True) dataloader = paddle.io.DataLoader( dataset, batch_sampler=sampler, return_list=True, collate_fn=data_collator, num_workers=0) else: shuffle = True if mode == 'train' else False sampler = paddle.io.BatchSampler( dataset=dataset, batch_size=batch_size, shuffle=shuffle) dataloader = paddle.io.DataLoader( dataset, batch_sampler=sampler, return_list=True, collate_fn=data_collator, num_workers=0) return dataloader def do_train(args): paddle.enable_static() if not args.eager_run else None paddle.set_device("gpu" if args.n_gpu else "cpu") if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) worker_init = WorkerInitObj(args.seed + paddle.distributed.get_rank()) args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] # Loads or initializes a model. pretrained_models = list(tokenizer_class.pretrained_init_configuration.keys( )) if args.model_name_or_path in pretrained_models: tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) generator = ElectraGenerator( ElectraModel(**model_class.pretrained_init_configuration[ args.model_name_or_path + "-generator"])) discriminator = ElectraDiscriminator( ElectraModel(**model_class.pretrained_init_configuration[ args.model_name_or_path + "-discriminator"])) model = model_class(generator, discriminator) else: if os.path.isdir(args.model_name_or_path) and args.init_from_ckpt: # load checkpoint tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) for file_id, file_name in model_class.resource_files_names.items(): full_file_name = os.path.join(args.model_name_or_path, file_name) # to be write : load model ckpt file else: raise ValueError("initialize a model need identifier or the " "path to a directory instead. The supported model " "identifiers are as follows: {}".format( model_class.pretrained_init_configuration.keys( ))) criterion = ElectraPretrainingCriterion( getattr(model.generator, ElectraGenerator.base_model_prefix).config["vocab_size"], model.gen_weight, model.disc_weight) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) # Loads dataset. tic_load_data = time.time() print("start load data : %s" % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) train_dataset = BookCorpus( data_path=args.input_dir, tokenizer=tokenizer, max_seq_length=args.max_seq_length, mode='train') print("load data done, total : %s s" % (time.time() - tic_load_data)) # Reads data and generates mini-batches. data_collator = DataCollatorForElectra( tokenizer=tokenizer, max_seq_length=args.max_seq_length, mlm=True, mlm_probability=args.mask_prob) train_data_loader = create_dataloader( train_dataset, batch_size=args.train_batch_size, mode='train', use_gpu=True if args.n_gpu else False, data_collator=data_collator) num_training_steps = args.max_steps if args.max_steps > 0 else ( len(train_data_loader) * args.num_train_epochs) lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=args.warmup_steps, num_training_steps=num_training_steps: float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, grad_clip=clip, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) print("start train : %s" % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, raw_input_ids, gen_labels = batch gen_logits, disc_logits, disc_labels = model( input_ids=input_ids, raw_input_ids=raw_input_ids, gen_labels=gen_labels) loss = criterion(gen_logits, disc_logits, gen_labels, disc_labels) loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_gradients() #print("backward done, total %s s" % (time.time() - tic_train)) #tic_train = time.time() if global_step % args.logging_steps == 0: print( "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s" % (global_step, num_training_steps, epoch, step, paddle.distributed.get_rank(), loss, optimizer.get_lr(), args.logging_steps / (time.time() - tic_train))) tic_train = time.time() if global_step % args.save_steps == 0: if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0: output_dir = os.path.join(args.output_dir, "model_%d.pdparams" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model #model_to_save.save_pretrained(output_dir) paddle.save(model.state_dict(), os.path.join(output_dir, "model_state.pdparams")) tokenizer.save_pretrained(output_dir) paddle.save(optimizer.state_dict(), os.path.join(output_dir, "model_state.pdopt")) def print_arguments(args): """print arguments""" print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": args = parse_args() print_arguments(args) if args.n_gpu > 1: paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu) else: do_train(args)