from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys import math import numpy as np import argparse import functools import paddle import paddle.fluid as fluid import reader import models import utils from utils.utility import add_arguments,print_arguments parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('class_dim', int, 5000, "Class number.") add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "ResNeXt101_32x4d", "Set the network to use.") add_arg('save_inference', bool, False, "Whether to save inference model or not") add_arg('resize_short_size', int, 256, "Set resize short size") add_arg('img_list', str, None, "list of valset") add_arg('img_path', str, None, "path of valset") # yapf: enable def infer(args): # parameters from arguments class_dim = args.class_dim model_name = args.model save_inference = args.save_inference pretrained_model = args.pretrained_model image_shape = [int(m) for m in args.image_shape.split(",")] model_list = [m for m in dir(models) if "__" not in m] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') # model definition model = models.__dict__[model_name]() if model_name == "GoogleNet": out, _, _ = model.net(input=image, class_dim=class_dim) else: out = model.net(input=image, class_dim=class_dim) test_program = fluid.default_main_program().clone(for_test=True) fetch_list = [out.name] place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, pretrained_model) if save_inference: fluid.io.save_inference_model( dirname=model_name, feeded_var_names=['image'], main_program=test_program, target_vars=out, executor=exe, model_filename='model', params_filename='params') print("model: ",model_name," is already saved") exit(0) test_batch_size = 1 img_size = image_shape[1] test_reader = paddle.batch(reader.test(args, img_size), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image]) TOPK = 1 for batch_id, data in enumerate(test_reader()): result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) result = result[0][0] pred_label = np.argsort(result)[::-1][:TOPK] print("Test-{0}-score: {1}, class {2}" .format(batch_id, result[pred_label], pred_label)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == '__main__': main()