import os import sys import gzip import paddle.v2 as paddle import reader from utils import logger, parse_train_cmd, build_dict, load_dict from network_conf import fc_net, convolution_net def train(topology, train_data_dir=None, test_data_dir=None, word_dict_path=None, label_dict_path=None, model_save_dir="models", batch_size=32, num_passes=10): """ train dnn model :params train_data_path: path of training data, if this parameter is not specified, paddle.dataset.imdb will be used to run this example :type train_data_path: str :params test_data_path: path of testing data, if this parameter is not specified, paddle.dataset.imdb will be used to run this example :type test_data_path: str :params word_dict_path: path of training data, if this parameter is not specified, paddle.dataset.imdb will be used to run this example :type word_dict_path: str :params num_pass: train pass number :type num_pass: int """ if not os.path.exists(model_save_dir): os.mkdir(model_save_dir) use_default_data = (train_data_dir is None) if use_default_data: logger.info(("No training data are provided, " "use paddle.dataset.imdb to train the model.")) logger.info("please wait to build the word dictionary ...") word_dict = paddle.dataset.imdb.word_dict() train_reader = paddle.batch( paddle.reader.shuffle( lambda: paddle.dataset.imdb.train(word_dict)(), buf_size=51200), batch_size=100) test_reader = paddle.batch( lambda: paddle.dataset.imdb.test(word_dict)(), batch_size=100) class_num = 2 else: if word_dict_path is None or not os.path.exists(word_dict_path): logger.info(("word dictionary is not given, the dictionary " "is automatically built from the training data.")) # build the word dictionary to map the original string-typed # words into integer-typed index build_dict( data_dir=train_data_dir, save_path=word_dict_path, use_col=1, cutoff_fre=5, insert_extra_words=[""]) if not os.path.exists(label_dict_path): logger.info(("label dictionary is not given, the dictionary " "is automatically built from the training data.")) # build the label dictionary to map the original string-typed # label into integer-typed index build_dict( data_dir=train_data_dir, save_path=label_dict_path, use_col=0) word_dict = load_dict(word_dict_path) lbl_dict = load_dict(label_dict_path) class_num = len(lbl_dict) logger.info("class number is : %d." % (len(lbl_dict))) train_reader = paddle.batch( paddle.reader.shuffle( reader.train_reader(train_data_dir, word_dict, lbl_dict), buf_size=51200), batch_size=batch_size) if test_data_dir is not None: # here, because training and testing data share a same format, # we still use the reader.train_reader to read the testing data. test_reader = paddle.batch( reader.train_reader(test_data_dir, word_dict, lbl_dict), batch_size=batch_size) else: test_reader = None dict_dim = len(word_dict) logger.info("length of word dictionary is : %d." % (dict_dim)) paddle.init(use_gpu=False, trainer_count=1) # network config cost, prob, label = topology(dict_dim, class_num) # create parameters parameters = paddle.parameters.create(cost) # create optimizer adam_optimizer = paddle.optimizer.Adam( learning_rate=1e-3, regularization=paddle.optimizer.L2Regularization(rate=1e-3), model_average=paddle.optimizer.ModelAverage(average_window=0.5)) # create trainer trainer = paddle.trainer.SGD( cost=cost, extra_layers=paddle.evaluator.auc(input=prob, label=label), parameters=parameters, update_equation=adam_optimizer) # begin training network feeding = {"word": 0, "label": 1} def _event_handler(event): """ Define end batch and end pass event handler """ if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: logger.info("Pass %d, Batch %d, Cost %f, %s\n" % ( event.pass_id, event.batch_id, event.cost, event.metrics)) if isinstance(event, paddle.event.EndPass): if test_reader is not None: result = trainer.test(reader=test_reader, feeding=feeding) logger.info("Test at Pass %d, %s \n" % (event.pass_id, result.metrics)) with gzip.open( os.path.join(model_save_dir, "dnn_params_pass_%05d.tar.gz" % event.pass_id), "w") as f: trainer.save_parameter_to_tar(f) trainer.train( reader=train_reader, event_handler=_event_handler, feeding=feeding, num_passes=num_passes) logger.info("Training has finished.") def main(args): if args.nn_type == "dnn": topology = fc_net elif args.nn_type == "cnn": topology = convolution_net train( topology=topology, train_data_dir=args.train_data_dir, test_data_dir=args.test_data_dir, word_dict_path=args.word_dict, label_dict_path=args.label_dict, batch_size=args.batch_size, num_passes=args.num_passes, model_save_dir=args.model_save_dir) if __name__ == "__main__": args = parse_train_cmd() if args.train_data_dir is not None: assert args.word_dict and args.label_dict, ( "the parameter train_data_dir, word_dict_path, and label_dict_path " "should be set at the same time.") main(args)