import logging logging.basicConfig() logger = logging.getLogger("paddle") logger.setLevel(logging.INFO) class TaskMode: TRAIN_MODE = 0 TEST_MODE = 1 INFER_MODE = 2 def __init__(self, mode): self.mode = mode def is_train(self): return self.mode == self.TRAIN_MODE def is_test(self): return self.mode == self.TEST_MODE def is_infer(self): return self.mode == self.INFER_MODE @staticmethod def create_train(): return TaskMode(TaskMode.TRAIN_MODE) @staticmethod def create_test(): return TaskMode(TaskMode.TEST_MODE) @staticmethod def create_infer(): return TaskMode(TaskMode.INFER_MODE) class ModelType: CLASSIFICATION = 0 REGRESSION = 1 def __init__(self, mode): self.mode = mode def is_classification(self): return self.mode == self.CLASSIFICATION def is_regression(self): return self.mode == self.REGRESSION @staticmethod def create_classification(): return ModelType(ModelType.CLASSIFICATION) @staticmethod def create_regression(): return ModelType(ModelType.REGRESSION) def load_dnn_input_record(sent): return map(int, sent.split()) def load_lr_input_record(sent): res = [] for _ in [x.split(':') for x in sent.split()]: res.append(( int(_[0]), float(_[1]), )) return res