# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import argparse import paddle import paddlenlp as ppnlp import paddle.nn.functional as F from utils import load_vocab, generate_batch, preprocess_prediction_data # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--use_gpu", type=eval, default=False, help="Whether use GPU for training, input should be True or False") parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.") parser.add_argument("--vocab_path", type=str, default="./data/term2id.dict", help="The path to vocabulary.") parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?") parser.add_argument("--params_path", type=str, default='./chekpoints/final.pdparams', help="The path of model parameter to be loaded.") args = parser.parse_args() # yapf: enable def predict(model, data, label_map, collate_fn, batch_size=1, pad_token_id=0): """ Predicts the data labels. Args: model (obj:`paddle.nn.Layer`): A model to classify texts. data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object. A Example object contains `text`(word_ids) and `seq_len`(sequence length). label_map(obj:`dict`): The label id (key) to label str (value) map. collate_fn(obj: `callable`): function to generate mini-batch data by merging the sample list. batch_size(obj:`int`, defaults to 1): The number of batch. pad_token_id(obj:`int`, optinal, defaults to 0) : The pad token index. Returns: results(obj:`dict`): All the predictions labels. """ # Seperates data into some batches. batches = [] one_batch = [] for example in data: one_batch.append(example) if len(one_batch) == batch_size: batches.append(one_batch) one_batch = [] if one_batch: # The last batch whose size is less than the config batch_size setting. batches.append(one_batch) results = [] model.eval() for batch in batches: queries, titles, query_seq_lens, title_seq_lens = collate_fn( batch, pad_token_id=pad_token_id, return_label=False) queries = paddle.to_tensor(queries) titles = paddle.to_tensor(titles) query_seq_lens = paddle.to_tensor(query_seq_lens) title_seq_lens = paddle.to_tensor(title_seq_lens) logits = model(queries, titles, query_seq_lens, title_seq_lens) probs = F.softmax(logits, axis=1) idx = paddle.argmax(probs, axis=1).numpy() idx = idx.tolist() labels = [label_map[i] for i in idx] results.extend(labels) return results if __name__ == "__main__": paddle.set_device("gpu") if args.use_gpu else paddle.set_device("cpu") # Loads vocab. vocab = load_vocab(args.vocab_path) label_map = {0: 'dissimilar', 1: 'similar'} # Constructs the newtork. model = ppnlp.models.SimNet( network=args.network, vocab_size=len(vocab), num_classes=len(label_map)) # Loads model parameters. state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) # Firstly pre-processing prediction data and then do predict. data = [ ['世界上什么东西最小', '世界上什么东西最小?'], ['光眼睛大就好看吗', '眼睛好看吗?'], ['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'], ] examples = preprocess_prediction_data(data, vocab) results = predict( model, examples, label_map=label_map, batch_size=args.batch_size, collate_fn=generate_batch) for idx, text in enumerate(data): print('Data: {} \t Label: {}'.format(text, results[idx]))