""" JSMA tutorial on mnist using advbox tool. JSMA method supports both targeted attack and non-targeted attack. """ import sys sys.path.append("..") import matplotlib.pyplot as plt import paddle.fluid as fluid import paddle.v2 as paddle from advbox.adversary import Adversary from advbox.attacks.saliency import JSMA from advbox.models.paddle import PaddleModel from tutorials.mnist_model import mnist_cnn_model def main(): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') logits = mnist_cnn_model(img) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) # use CPU place = fluid.CPUPlace() # use GPU # place = fluid.CUDAPlace(0) exe = fluid.Executor(place) BATCH_SIZE = 1 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=128 * 10), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.test(), buf_size=128 * 10), batch_size=BATCH_SIZE) fluid.io.load_params( exe, "./mnist/", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel( fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1), channel_axis=1) attack = JSMA(m) attack_config = { "max_iter": 2000, "theta": 0.1, "max_perturbations_per_pixel": 7 } # use train data to generate adversarial examples total_count = 0 fooling_count = 0 for data in train_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # JSMA non-targeted attack adversary = attack(adversary, **attack_config) # JSMA targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) # JSMA may return None if adversary is not None and adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # JSMA non-targeted attack adversary = attack(adversary, **attack_config) # JSMA targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) # JSMA may return None if adversary is not None and adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("jsma attack done") if __name__ == '__main__': main()