# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import distutils.util import numpy as np import six import argparse import functools import logging import sys import os import warnings import signal import paddle import paddle.fluid as fluid from paddle.fluid.wrapped_decorator import signature_safe_contextmanager from paddle.fluid.framework import Program, program_guard, name_scope, default_main_program from paddle.fluid import unique_name, layers from utils import dist_utils def print_arguments(args): """Print argparse's arguments. Usage: .. code-block:: python parser = argparse.ArgumentParser() parser.add_argument("name", default="Jonh", type=str, help="User name.") args = parser.parse_args() print_arguments(args) :param args: Input argparse.Namespace for printing. :type args: argparse.Namespace """ print("------------- Configuration Arguments -------------") for arg, value in sorted(six.iteritems(vars(args))): print("%25s : %s" % (arg, value)) print("----------------------------------------------------") def add_arguments(argname, type, default, help, argparser, **kwargs): """Add argparse's argument. Usage: .. code-block:: python parser = argparse.ArgumentParser() add_argument("name", str, "Jonh", "User name.", parser) args = parser.parse_args() """ type = distutils.util.strtobool if type == bool else type argparser.add_argument( "--" + argname, default=default, type=type, help=help + ' Default: %(default)s.', **kwargs) def parse_args(): """Add arguments Returns: all training args """ parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable # ENV add_arg('use_gpu', bool, True, "Whether to use GPU.") add_arg('model_save_dir', str, "./output", "The directory path to save model.") add_arg('data_dir', str, "./data/ILSVRC2012/", "The ImageNet dataset root directory.") add_arg('pretrained_model', str, None, "Whether to load pretrained model.") add_arg('checkpoint', str, None, "Whether to resume checkpoint.") add_arg('print_step', int, 10, "The steps interval to print logs") add_arg('save_step', int, 1, "The steps interval to save checkpoints") # SOLVER AND HYPERPARAMETERS add_arg('model', str, "ResNet50", "The name of network.") add_arg('total_images', int, 1281167, "The number of total training images.") add_arg('num_epochs', int, 120, "The number of total epochs.") add_arg('class_dim', int, 1000, "The number of total classes.") add_arg('image_shape', str, "3,224,224", "The size of Input image, order: [channels, height, weidth] ") add_arg('batch_size', int, 8, "Minibatch size on a device.") add_arg('test_batch_size', int, 16, "Test batch size on a deveice.") add_arg('lr', float, 0.1, "The learning rate.") add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.") add_arg('l2_decay', float, 1e-4, "The l2_decay parameter.") add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.") add_arg('warm_up_epochs', float, 5.0, "The value of warm up epochs") add_arg('decay_epochs', float, 2.4, "Decay epochs of exponential decay learning rate scheduler") add_arg('decay_rate', float, 0.97, "Decay rate of exponential decay learning rate scheduler") add_arg('drop_connect_rate', float, 0.2, "The value of drop connect rate") parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step") # READER AND PREPROCESS add_arg('use_dali', bool, False, "Whether to use nvidia DALI for preprocessing") add_arg('lower_scale', float, 0.08, "The value of lower_scale in ramdom_crop") add_arg('lower_ratio', float, 3./4., "The value of lower_ratio in ramdom_crop") add_arg('upper_ratio', float, 4./3., "The value of upper_ratio in ramdom_crop") add_arg('resize_short_size', int, 256, "The value of resize_short_size") add_arg('crop_size', int, 224, "The value of crop size") add_arg('use_mixup', bool, False, "Whether to use mixup") add_arg('mixup_alpha', float, 0.2, "The value of mixup_alpha") add_arg('reader_thread', int, 8, "The number of multi thread reader") add_arg('reader_buf_size', int, 2048, "The buf size of multi thread reader") add_arg('interpolation', int, None, "The interpolation mode") add_arg('use_aa', bool, False, "Whether to use auto augment") parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data") parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data") # SWITCH #NOTE: (2019/08/08) FP16 is moving to PaddlePaddle/Fleet now #add_arg('use_fp16', bool, False, "Whether to enable half precision training with fp16." ) #add_arg('scale_loss', float, 1.0, "The value of scale_loss for fp16." ) add_arg('use_label_smoothing', bool, False, "Whether to use label_smoothing") add_arg('label_smoothing_epsilon', float, 0.1, "The value of label_smoothing_epsilon parameter") #NOTE: (2019/08/08) temporary disable use_distill #add_arg('use_distill', bool, False, "Whether to use distill") add_arg('random_seed', int, None, "random seed") add_arg('use_ema', bool, False, "Whether to use ExponentialMovingAverage.") add_arg('ema_decay', float, 0.9999, "The value of ema decay rate") add_arg('padding_type', str, "SAME", "Padding type of convolution") add_arg('use_se', bool, True, "Whether to use Squeeze-and-Excitation module for EfficientNet.") # yapf: enable #NOTE: args for profiler add_arg('is_profiler', int, 0, "the profiler switch.(used for benchmark)") add_arg('profiler_path', str, './', "the profiler output file path.(used for benchmark)") add_arg('max_iter', int, 0, "the max train batch num.(used for benchmark)") add_arg('validate', int, 1, "whether validate.(used for benchmark)") args = parser.parse_args() return args def check_gpu(): """ Log error and exit when set use_gpu=true in paddlepaddle cpu ver sion. """ logger = logging.getLogger(__name__) err = "Config use_gpu cannot be set as true while you are " \ "using paddlepaddle cpu version ! \nPlease try: \n" \ "\t1. Install paddlepaddle-gpu to run model on GPU \n" \ "\t2. Set use_gpu as false in config file to run " \ "model on CPU" try: if args.use_gpu and not fluid.is_compiled_with_cuda(): print(err) sys.exit(1) except Exception as e: pass def check_version(): """ Log error and exit when the installed version of paddlepaddle is not satisfied. """ err = "PaddlePaddle version 1.6 or higher is required, " \ "or a suitable develop version is satisfied as well. \n" \ "Please make sure the version is good with your code." \ try: fluid.require_version('1.6.0') except Exception as e: print(err) sys.exit(1) def check_args(args): """check arguments before running Args: all arguments """ # check models name sys.path.append("..") import models model_list = [m for m in dir(models) if "__" not in m] assert args.model in model_list, "{} is not in lists: {}, please check the model name".format( args.model, model_list) # check learning rate strategy lr_strategy_list = [ "piecewise_decay", "cosine_decay", "linear_decay", "cosine_decay_warmup", "exponential_decay_warmup" ] if args.lr_strategy not in lr_strategy_list: warnings.warn( "\n{} is not in lists: {}, \nUse default learning strategy now.". format(args.lr_strategy, lr_strategy_list)) args.lr_strategy = "default_decay" # check confict of GoogLeNet and mixup if args.model == "GoogLeNet": assert args.use_mixup == False, "Cannot use mixup processing in GoogLeNet, please set use_mixup = False." if args.interpolation: assert args.interpolation in [ 0, 1, 2, 3, 4 ], "Wrong interpolation, please set:\n0: cv2.INTER_NEAREST\n1: cv2.INTER_LINEAR\n2: cv2.INTER_CUBIC\n3: cv2.INTER_AREA\n4: cv2.INTER_LANCZOS4" if args.padding_type: assert args.padding_type in [ "SAME", "VALID", "DYNAMIC" ], "Wrong padding_type, please set:\nSAME\nVALID\nDYNAMIC" assert args.checkpoint is None or args.pretrained_model is None, "Do not init model by checkpoint and pretrained_model both." # check pretrained_model path for loading if args.pretrained_model is not None: assert isinstance(args.pretrained_model, str) assert os.path.isdir( args. pretrained_model), "please support available pretrained_model path." #FIXME: check checkpoint path for saving if args.checkpoint is not None: assert isinstance(args.checkpoint, str) assert os.path.isdir( args.checkpoint ), "please support available checkpoint path for initing model." # check params for loading """ if args.save_params: assert isinstance(args.save_params, str) assert os.path.isdir( args.save_params), "please support available save_params path." """ # check gpu: when using gpu, the number of visible cards should divide batch size if args.use_gpu: assert args.batch_size % fluid.core.get_cuda_device_count( ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format( args.batch_size, fluid.core.get_cuda_device_count()) # check data directory assert os.path.isdir( args.data_dir ), "Data doesn't exist in {}, please load right path".format(args.data_dir) #check gpu check_gpu() check_version() def init_model(exe, args, program): if args.checkpoint: fluid.io.load_persistables(exe, args.checkpoint, main_program=program) print("Finish initing model from %s" % (args.checkpoint)) if args.pretrained_model: def if_exist(var): return os.path.exists(os.path.join(args.pretrained_model, var.name)) fluid.io.load_vars( exe, args.pretrained_model, main_program=program, predicate=if_exist) def save_model(args, exe, train_prog, info): model_path = os.path.join(args.model_save_dir, args.model, str(info)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables(exe, model_path, main_program=train_prog) print("Already save model in %s" % (model_path)) def create_data_loader(is_train, args): """create data_loader Usage: Using mixup process in training, it will return 5 results, include data_loader, image, y_a(label), y_b(label) and lamda, or it will return 3 results, include data_loader, image, and label. Args: is_train: mode args: arguments Returns: data_loader and the input data of net, """ image_shape = [int(m) for m in args.image_shape.split(",")] feed_image = fluid.data( name="feed_image", shape=[None] + image_shape, dtype="float32", lod_level=0) feed_label = fluid.data( name="feed_label", shape=[None, 1], dtype="int64", lod_level=0) feed_y_a = fluid.data( name="feed_y_a", shape=[None, 1], dtype="int64", lod_level=0) if is_train and args.use_mixup: feed_y_b = fluid.data( name="feed_y_b", shape=[None, 1], dtype="int64", lod_level=0) feed_lam = fluid.data( name="feed_lam", shape=[None, 1], dtype="float32", lod_level=0) data_loader = fluid.io.DataLoader.from_generator( feed_list=[feed_image, feed_y_a, feed_y_b, feed_lam], capacity=64, use_double_buffer=True, iterable=True) return data_loader, [feed_image, feed_y_a, feed_y_b, feed_lam] else: if args.use_dali: return None, [feed_image, feed_label] data_loader = fluid.io.DataLoader.from_generator( feed_list=[feed_image, feed_label], capacity=64, use_double_buffer=True, iterable=True) return data_loader, [feed_image, feed_label] def print_info(pass_id, batch_id, print_step, metrics, time_info, info_mode): """print function Args: pass_id: epoch index batch_id: batch index print_step: the print_step arguments metrics: message to print time_info: time infomation info_mode: mode """ if info_mode == "batch": if batch_id % print_step == 0: #if isinstance(metrics,np.ndarray): # train and mixup output if len(metrics) == 2: loss, lr = metrics print( "[Pass {0}, train batch {1}] \tloss {2}, lr {3}, elapse {4}". format(pass_id, batch_id, "%.5f" % loss, "%.5f" % lr, "%2.4f sec" % time_info)) # train and no mixup output elif len(metrics) == 4: loss, acc1, acc5, lr = metrics print( "[Pass {0}, train batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, lr {5}, elapse {6}". format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1, "%.5f" % acc5, "%.5f" % lr, "%2.4f sec" % time_info)) # test output elif len(metrics) == 3: loss, acc1, acc5 = metrics print( "[Pass {0}, test batch {1}] \tloss {2}, acc1 {3}, acc5 {4}, elapse {5}". format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1, "%.5f" % acc5, "%2.4f sec" % time_info)) else: raise Exception( "length of metrics {} is not implemented, It maybe caused by wrong format of build_program_output". format(len(metrics))) sys.stdout.flush() elif info_mode == "epoch": ## TODO add time elapse #if isinstance(metrics,np.ndarray): if len(metrics) == 5: train_loss, _, test_loss, test_acc1, test_acc5 = metrics print( "[End pass {0}]\ttrain_loss {1}, test_loss {2}, test_acc1 {3}, test_acc5 {4}". format(pass_id, "%.5f" % train_loss, "%.5f" % test_loss, "%.5f" % test_acc1, "%.5f" % test_acc5)) elif len(metrics) == 7: train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics print( "[End pass {0}]\ttrain_loss {1}, train_acc1 {2}, train_acc5 {3},test_loss {4}, test_acc1 {5}, test_acc5 {6}". format(pass_id, "%.5f" % train_loss, "%.5f" % train_acc1, "%.5f" % train_acc5, "%.5f" % test_loss, "%.5f" % test_acc1, "%.5f" % test_acc5)) sys.stdout.flush() elif info_mode == "ce": raise Warning("CE code is not ready") else: raise Exception("Illegal info_mode") def best_strategy_compiled(args, program, loss, exe): """make a program which wrapped by a compiled program """ if os.getenv('FLAGS_use_ngraph'): return program else: build_strategy = fluid.compiler.BuildStrategy() #Feature will be supported in Fluid v1.6 #build_strategy.enable_inplace = True exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = fluid.core.get_cuda_device_count() exec_strategy.num_iteration_per_drop_scope = 10 num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) if num_trainers > 1 and args.use_gpu: dist_utils.prepare_for_multi_process(exe, build_strategy, program) # NOTE: the process is fast when num_threads is 1 # for multi-process training. exec_strategy.num_threads = 1 compiled_program = fluid.CompiledProgram(program).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) return compiled_program class ExponentialMovingAverage(object): def __init__(self, decay=0.999, thres_steps=None, zero_debias=False, name=None): self._decay = decay self._thres_steps = thres_steps self._name = name if name is not None else '' self._decay_var = self._get_ema_decay() self._params_tmps = [] for param in default_main_program().global_block().all_parameters(): if param.do_model_average != False: tmp = param.block.create_var( name=unique_name.generate(".".join( [self._name + param.name, 'ema_tmp'])), dtype=param.dtype, persistable=False, stop_gradient=True) self._params_tmps.append((param, tmp)) self._ema_vars = {} for param, tmp in self._params_tmps: with param.block.program._optimized_guard( [param, tmp]), name_scope('moving_average'): self._ema_vars[param.name] = self._create_ema_vars(param) self.apply_program = Program() block = self.apply_program.global_block() with program_guard(main_program=self.apply_program): decay_pow = self._get_decay_pow(block) for param, tmp in self._params_tmps: param = block._clone_variable(param) tmp = block._clone_variable(tmp) ema = block._clone_variable(self._ema_vars[param.name]) layers.assign(input=param, output=tmp) # bias correction if zero_debias: ema = ema / (1.0 - decay_pow) layers.assign(input=ema, output=param) self.restore_program = Program() block = self.restore_program.global_block() with program_guard(main_program=self.restore_program): for param, tmp in self._params_tmps: tmp = block._clone_variable(tmp) param = block._clone_variable(param) layers.assign(input=tmp, output=param) def _get_ema_decay(self): with default_main_program()._lr_schedule_guard(): decay_var = layers.tensor.create_global_var( shape=[1], value=self._decay, dtype='float32', persistable=True, name="scheduled_ema_decay_rate") if self._thres_steps is not None: decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0) with layers.control_flow.Switch() as switch: with switch.case(decay_t < self._decay): layers.tensor.assign(decay_t, decay_var) with switch.default(): layers.tensor.assign( np.array( [self._decay], dtype=np.float32), decay_var) return decay_var def _get_decay_pow(self, block): global_steps = layers.learning_rate_scheduler._decay_step_counter() decay_var = block._clone_variable(self._decay_var) decay_pow_acc = layers.elementwise_pow(decay_var, global_steps + 1) return decay_pow_acc def _create_ema_vars(self, param): param_ema = layers.create_global_var( name=unique_name.generate(self._name + param.name + '_ema'), shape=param.shape, value=0.0, dtype=param.dtype, persistable=True) return param_ema def update(self): """ Update Exponential Moving Average. Should only call this method in train program. """ param_master_emas = [] for param, tmp in self._params_tmps: with param.block.program._optimized_guard( [param, tmp]), name_scope('moving_average'): param_ema = self._ema_vars[param.name] if param.name + '.master' in self._ema_vars: master_ema = self._ema_vars[param.name + '.master'] param_master_emas.append([param_ema, master_ema]) else: ema_t = param_ema * self._decay_var + param * ( 1 - self._decay_var) layers.assign(input=ema_t, output=param_ema) # for fp16 params for param_ema, master_ema in param_master_emas: default_main_program().global_block().append_op( type="cast", inputs={"X": master_ema}, outputs={"Out": param_ema}, attrs={ "in_dtype": master_ema.dtype, "out_dtype": param_ema.dtype }) @signature_safe_contextmanager def apply(self, executor, need_restore=True): """ Apply moving average to parameters for evaluation. Args: executor (Executor): The Executor to execute applying. need_restore (bool): Whether to restore parameters after applying. """ executor.run(self.apply_program) try: yield finally: if need_restore: self.restore(executor) def restore(self, executor): """Restore parameters. Args: executor (Executor): The Executor to execute restoring. """ executor.run(self.restore_program)