# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """evaluation metrics""" import os import sys import numpy as np import ade.evaluate as evaluate from ade.utils.configure import PDConfig def do_eval(args): """evaluate metrics""" labels = [] with open(args.evaluation_file, 'r') as fr: for line in fr: tokens = line.strip().split('\t') assert len(tokens) == 3 label = int(tokens[2]) labels.append(label) scores = [] with open(args.output_prediction_file, 'r') as fr: for line in fr: tokens = line.strip().split('\t') assert len(tokens) == 2 score = tokens[1].strip("[]").split() score = np.array(score) score = score.astype(np.float64) scores.append(score) if args.loss_type == 'CLS': recall_dict = evaluate.evaluate_Recall(list(zip(scores, labels))) mean_score = sum(scores) / len(scores) print('mean score: %.6f' % mean_score) print('evaluation recall result:') print('1_in_2: %.6f\t1_in_10: %.6f\t2_in_10: %.6f\t5_in_10: %.6f' % (recall_dict['1_in_2'], recall_dict['1_in_10'], recall_dict['2_in_10'], recall_dict['5_in_10'])) elif args.loss_type == 'L2': scores = [x[0] for x in scores] mean_score = sum(scores) / len(scores) cor = evaluate.evaluate_cor(scores, labels) print('mean score: %.6f\nevaluation cor results:%.6f' % (mean_score, cor)) else: raise ValueError if __name__ == "__main__": args = PDConfig(yaml_file="./data/config/ade.yaml") args.build() do_eval(args)