# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Network for auto dialogue evaluation""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid def create_net( is_training, model_input, args, clip_value=10.0, word_emb_name="shared_word_emb", lstm_W_name="shared_lstm_W", lstm_bias_name="shared_lstm_bias"): context_wordseq = model_input.context_wordseq response_wordseq = model_input.response_wordseq label = model_input.labels #emb context_emb = fluid.input.embedding( input=context_wordseq, size=[args.vocab_size, args.emb_size], is_sparse=True, param_attr=fluid.ParamAttr( name=word_emb_name, initializer=fluid.initializer.Normal(scale=0.1))) response_emb = fluid.input.embedding( input=response_wordseq, size=[args.vocab_size, args.emb_size], is_sparse=True, param_attr=fluid.ParamAttr( name=word_emb_name, initializer=fluid.initializer.Normal(scale=0.1))) #fc to fit dynamic LSTM context_fc = fluid.layers.fc( input=context_emb, size=args.hidden_size * 4, param_attr=fluid.ParamAttr(name='fc_weight'), bias_attr=fluid.ParamAttr(name='fc_bias')) response_fc = fluid.layers.fc( input=response_emb, size=args.hidden_size * 4, param_attr=fluid.ParamAttr(name='fc_weight'), bias_attr=fluid.ParamAttr(name='fc_bias')) #LSTM context_rep, _ = fluid.layers.dynamic_lstm( input=context_fc, size=args.hidden_size * 4, param_attr=fluid.ParamAttr(name=lstm_W_name), bias_attr=fluid.ParamAttr(name=lstm_bias_name)) context_rep = fluid.layers.sequence_last_step(context_rep) response_rep, _ = fluid.layers.dynamic_lstm( input=response_fc, size=args.hidden_size * 4, param_attr=fluid.ParamAttr(name=lstm_W_name), bias_attr=fluid.ParamAttr(name=lstm_bias_name)) response_rep = fluid.layers.sequence_last_step(input=response_rep) logits = fluid.layers.bilinear_tensor_product( context_rep, response_rep, size=1) if args.loss_type == 'CLS': label = fluid.layers.cast(x=label, dtype='float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label) loss = fluid.layers.reduce_mean( fluid.layers.clip( loss, min=-clip_value, max=clip_value)) elif args.loss_type == 'L2': norm_score = 2 * fluid.layers.sigmoid(logits) label = fluid.layers.cast(x=label, dtype='float32') loss = fluid.layers.square_error_cost(norm_score, label) / 4 loss = fluid.layers.reduce_mean(loss) else: raise ValueError if is_training: return loss else: return logits def set_word_embedding(word_emb, place, word_emb_name="shared_word_emb"): """ Set word embedding """ word_emb_param = fluid.global_scope().find_var( word_emb_name).get_tensor() word_emb_param.set(word_emb, place)