import paddle import io import math import numpy as np import paddle.fluid as fluid class YoutubeDNN(object): def input_data(self, watch_vec_size, search_vec_size, other_feat_size): watch_vec = fluid.data(name="watch_vec", shape=[None, watch_vec_size], dtype="float32") search_vec = fluid.data(name="search_vec", shape=[None, search_vec_size], dtype="float32") other_feat = fluid.data(name="other_feat", shape=[None, other_feat_size], dtype="float32") label = fluid.data(name="label", shape=[None, 1], dtype="int64") inputs = [watch_vec] + [search_vec] + [other_feat] + [label] return inputs def fc(self, tag, data, out_dim, active='relu'): init_stddev = 1.0 scales = 1.0 / np.sqrt(data.shape[1]) if tag == 'l4': p_attr = fluid.param_attr.ParamAttr(name='%s_weight' % tag, initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=init_stddev * scales)) else: p_attr = None b_attr = fluid.ParamAttr(name='%s_bias' % tag, initializer=fluid.initializer.Constant(0.1)) out = fluid.layers.fc(input=data, size=out_dim, act=active, param_attr=p_attr, bias_attr =b_attr, name=tag) return out def net(self, inputs, output_size, layers=[128, 64, 32]): concat_feats = fluid.layers.concat(input=inputs[:-1], axis=-1) l1 = self.fc('l1', concat_feats, layers[0], 'relu') l2 = self.fc('l2', l1, layers[1], 'relu') l3 = self.fc('l3', l2, layers[2], 'relu') l4 = self.fc('l4', l3, output_size, 'softmax') num_seqs = fluid.layers.create_tensor(dtype='int64') acc = fluid.layers.accuracy(input=l4, label=inputs[-1], total=num_seqs) cost = fluid.layers.cross_entropy(input=l4, label=inputs[-1]) avg_cost = fluid.layers.mean(cost) return avg_cost, acc, l3