"""Beam search parameters tuning for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import distutils.util import argparse import multiprocessing import paddle.v2 as paddle from data_utils.data import DataGenerator from model import DeepSpeech2Model from error_rate import wer NUM_CPU = multiprocessing.cpu_count() // 2 parser = argparse.ArgumentParser(description=__doc__) def add_arg(argname, type, default, help, **kwargs): type = distutils.util.strtobool if type == bool else type parser.add_argument( "--" + argname, default=default, type=type, help=help + ' Default: %(default)s.', **kwargs) # yapf: disable # configurations of overall add_arg('num_samples', int, 100, "# of samples to infer.") add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") add_arg('use_gpu', bool, True, "Use GPU or not.") add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.", choices=['wer', 'cer']) # configurations of tuning parameters add_arg('alpha_from', float, 0.1, "Where alpha starts tuning from.") add_arg('alpha_to', float, 0.36, "Where alpha ends tuning with.") add_arg('num_alphas', int, 14, "# of alpha candidates for tuning.") add_arg('beta_from', float, 0.05, "Where beta starts tuning from.") add_arg('beta_to', float, 0.36, "Where beta ends tuning with.") add_arg('num_betas', int, 20, "# of beta candidates for tuning.") # configurations of decoder add_arg('beam_size', int, 500, "Beam search width.") add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.") add_arg('parallels_bsearch',int, NUM_CPU,"# of CPUs for beam search.") add_arg('lang_model_path', str, 'lm/data/common_crawl_00.prune01111.trie.klm', "Filepath for language model.") # configurations of data preprocess add_arg('specgram_type', str, 'linear', "Audio feature type. Options: linear, mfcc.", choices=['linear', 'mfcc']) # configurations of model structure add_arg('num_conv_layers', int, 2, "# of convolution layers.") add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.") add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " "bi-directional RNNs. Not for GRU.") # configurations of data io add_arg('tune_manifest', str, 'datasets/manifest.test', "Filepath of manifest to tune.") add_arg('mean_std_path', str, 'mean_std.npz', "Filepath of normalizer's mean & std.") add_arg('vocab_path', str, 'datasets/vocab/eng_vocab.txt', "Filepath of vocabulary.") # configurations of model io add_arg('model_path', str, './checkpoints/params.latest.tar.gz', "If None, the training starts from scratch, " "otherwise, it resumes from the pre-trained model.") args = parser.parse_args() # yapf: disable def tune(): """Tune parameters alpha and beta on one minibatch.""" if not args.num_alphas >= 0: raise ValueError("num_alphas must be non-negative!") if not args.num_betas >= 0: raise ValueError("num_betas must be non-negative!") data_generator = DataGenerator( vocab_filepath=args.vocab_path, mean_std_filepath=args.mean_std_path, augmentation_config='{}', specgram_type=args.specgram_type, num_threads=1) batch_reader = data_generator.batch_reader_creator( manifest_path=args.tune_manifest, batch_size=args.num_samples, sortagrad=False, shuffle_method=None) tune_data = batch_reader().next() target_transcripts = [ ''.join([data_generator.vocab_list[token] for token in transcript]) for _, transcript in tune_data ] ds2_model = DeepSpeech2Model( vocab_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_layer_size=args.rnn_layer_size, use_gru=args.use_gru, pretrained_model_path=args.model_path, share_rnn_weights=args.share_rnn_weights) # create grid for search cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas) cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas) params_grid = [(alpha, beta) for alpha in cand_alphas for beta in cand_betas] ## tune parameters in loop for alpha, beta in params_grid: result_transcripts = ds2_model.infer_batch( infer_data=tune_data, decoder_method='ctc_beam_search', beam_alpha=alpha, beam_beta=beta, beam_size=args.beam_size, cutoff_prob=args.cutoff_prob, vocab_list=data_generator.vocab_list, language_model_path=args.lang_model_path, num_processes=args.parallels_bsearch) wer_sum, num_ins = 0.0, 0 for target, result in zip(target_transcripts, result_transcripts): wer_sum += wer(target, result) num_ins += 1 print("alpha = %f\tbeta = %f\tWER = %f" % (alpha, beta, wer_sum / num_ins)) def print_arguments(args): print("----------- Configuration Arguments -----------") for arg, value in sorted(vars(args).iteritems()): print("%s: %s" % (arg, value)) print("------------------------------------------------") def main(): print_arguments(args) paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count) tune() if __name__ == '__main__': main()