from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import time import sys import paddle import paddle.fluid as fluid import models import reader import argparse import functools from utility import add_arguments, print_arguments import math parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('class_dim', int, 1000, "Class number.") add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def infer(args): # parameters from arguments class_dim = args.class_dim model_name = args.model pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') # model definition model = models.__dict__[model_name]() if model_name is "GoogleNet": out, _, _ = model.net(input=image, class_dim=class_dim) else: out = model.net(input=image, class_dim=class_dim) test_program = fluid.default_main_program().clone(for_test=True) fetch_list = [out.name] if with_memory_optimization: fluid.memory_optimize( fluid.default_main_program(), skip_opt_set=set(fetch_list)) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) test_batch_size = 1 test_reader = paddle.batch(reader.test(), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image]) TOPK = 1 for batch_id, data in enumerate(test_reader()): result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) result = result[0][0] pred_label = np.argsort(result)[::-1][:TOPK] print("Test-{0}-score: {1}, class {2}" .format(batch_id, result[pred_label], pred_label)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == '__main__': main()