import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid # reproducible np.random.seed(1) class PolicyGradient: def __init__( self, n_actions, n_features, learning_rate=0.01, reward_decay=0.95, output_graph=False, ): self.n_actions = n_actions self.n_features = n_features self.lr = learning_rate self.gamma = reward_decay self.ep_obs, self.ep_as, self.ep_rs = [], [], [] self.place = fluid.CPUPlace() self.exe = fluid.Executor(self.place) def build_net(self): obs = fluid.layers.data( name='obs', shape=[self.n_features], dtype='float32') acts = fluid.layers.data(name='acts', shape=[1], dtype='int64') vt = fluid.layers.data(name='vt', shape=[1], dtype='float32') # fc1 fc1 = fluid.layers.fc( input=obs, size=10, act="tanh" # tanh activation ) # fc2 self.all_act_prob = fluid.layers.fc(input=fc1, size=self.n_actions, act="softmax") # to maximize total reward (log_p * R) is to minimize -(log_p * R) neg_log_prob = fluid.layers.cross_entropy( input=self.all_act_prob, label=acts) # this is negative log of chosen action neg_log_prob_weight = fluid.layers.elementwise_mul(x=neg_log_prob, y=vt) loss = fluid.layers.reduce_mean( x=neg_log_prob_weight) # reward guided loss sgd_optimizer = fluid.optimizer.SGD(self.lr) sgd_optimizer.minimize(loss) self.exe.run(fluid.default_startup_program()) def choose_action(self, observation): prob_weights = self.exe.run( fluid.default_main_program().prune(self.all_act_prob), feed={"obs": observation[np.newaxis, :]}, fetch_list=[self.all_act_prob]) prob_weights = np.array(prob_weights[0]) action = np.random.choice( range(prob_weights.shape[1]), p=prob_weights.ravel()) # select action w.r.t the actions prob return action def store_transition(self, s, a, r): self.ep_obs.append(s) self.ep_as.append(a) self.ep_rs.append(r) def learn(self): # discount and normalize episode reward discounted_ep_rs_norm = self._discount_and_norm_rewards() tensor_obs = np.vstack(self.ep_obs).astype("float32") tensor_as = np.array(self.ep_as).astype("int64") tensor_as = tensor_as.reshape([tensor_as.shape[0], 1]) tensor_vt = discounted_ep_rs_norm.astype("float32")[:, np.newaxis] # train on episode self.exe.run( fluid.default_main_program(), feed={ "obs": tensor_obs, # shape=[None, n_obs] "acts": tensor_as, # shape=[None, ] "vt": tensor_vt # shape=[None, ] }) self.ep_obs, self.ep_as, self.ep_rs = [], [], [] # empty episode data return discounted_ep_rs_norm def _discount_and_norm_rewards(self): # discount episode rewards discounted_ep_rs = np.zeros_like(self.ep_rs) running_add = 0 for t in reversed(range(0, len(self.ep_rs))): running_add = running_add * self.gamma + self.ep_rs[t] discounted_ep_rs[t] = running_add # normalize episode rewards discounted_ep_rs -= np.mean(discounted_ep_rs) discounted_ep_rs /= np.std(discounted_ep_rs) return discounted_ep_rs