# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import lru_cache from collections import namedtuple import json import jieba from paddle.utils import try_import from .. import PretrainedTokenizer from ..tokenizer_utils import convert_to_unicode, whitespace_tokenize,\ _is_whitespace, _is_control, _is_punctuation __all__ = [ 'GPT2Tokenizer', 'GPT2ChineseTokenizer', ] COMMAND_TUPLE = namedtuple('CommandToken', ('name', 'token', 'Id')) TYPE_TUPLE = namedtuple('TypeToken', ('name', 'token', 'Id')) class CommandToken(object): def __init__(self, name, token, Id): self.name = name self.token = token self.Id = Id def __str__(self): return str(COMMAND_TUPLE(self.name, self.token, self.Id)) @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ _chr = chr bs = list(range(ord("!"), ord("~") + 1)) + list( range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [_chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class GPT2ChineseTokenizer(PretrainedTokenizer): """ Constructs a GPT2 Chinese tokenizer. It uses a basic tokenizer to do punctuation splitting, lower casing and so on, and follows a WordPiece tokenizer to tokenize as subwords. """ resource_files_names = { "vocab_file": "vocab.json", "model_file": "sentencepiece.model" } # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "gpt2-base-cn": "https://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-base-cn-vocab.json", }, "model_file": { "gpt2-base-cn": "https://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-base-cn-sentencepiece.model" } } pretrained_init_configuration = {"gpt2-base-cn": {"do_lower_case": True}, } def __init__(self, vocab_file, model_file, do_lower_case=True, max_len=512, bod_id="", eod_id="", max_length=None): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the " "vocabulary from a pretrained model please use " "`tokenizer = GPT2Tokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" .format(vocab_file)) self.max_len = max_len if max_len is not None else int(1e12) self.encoder = json.load(open(vocab_file)) self.decoder = {v: k for k, v in self.encoder.items()} mod = try_import("sentencepiece") self.sp = mod.SentencePieceProcessor(model_file=model_file) self.translator = str.maketrans(" \n", "\u2582\u2583") def tokenize(self, text): """ Tokenize a string. """ seg_list = [ x.translate(self.translator) for x in jieba.cut(text, cut_all=False) ] new_seg = " ".join(seg_list) return self.sp.encode(new_seg) def encode(self, text): return self.convert_tokens_to_ids(text) def decode(self, tokens): return self.convert_ids_to_tokens(tokens) def convert_tokens_to_ids(self, text): res = self.tokenize(text) return res def convert_ids_to_tokens(self, tokens): text = self.sp.decode(tokens) text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n') return text class GPT2Tokenizer(PretrainedTokenizer): resource_files_names = { "vocab_file": "vocab.json", "merges_file": "merges.txt" } # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "gpt2-large-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-large-en-vocab.json", "gpt2-medium-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-medium-en-vocab.json", "gpt2-small-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-small-en-vocab.json", }, "merges_file": { "gpt2-large-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-large-en-merges.txt", "gpt2-medium-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-medium-en-merges.txt", "gpt2-small-en": "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-small-en-merges.txt", } } pretrained_init_configuration = { "gpt2-large-en": { "do_lower_case": True }, "gpt2-medium-en": { "do_lower_case": True }, "gpt2-small-en": { "do_lower_case": True }, } def __init__(self, vocab_file, merges_file, errors='replace', special_tokens=None, max_len=None, do_lower_case=True): self.max_len = int(1e12) self.num_command_tokens = 2 self.num_type_tokens = 2 self.encoder = json.load(open(vocab_file)) self.decoder = {v: k for k, v in self.encoder.items()} # construct the command tokens self._command_tokens = [ CommandToken('pad', '<|endoftext|>', self.encoder['<|endoftext|>']), CommandToken('eod', '<|endoftext|>', self.encoder['<|endoftext|>']), ] self.command_name_map = {tok.name: tok for tok in self._command_tokens} self.command_token_map = { tok.token: tok for tok in self._command_tokens } self.command_id_map = {tok.Id: tok for tok in self._command_tokens} self.num_tokens = len(self.encoder) self.num_text_tokens = self.num_tokens - 1 self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_data] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} re = try_import("regex") self.pat = re.compile( r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) self.special_tokens = {} self.special_tokens_decoder = {} self.set_special_tokens(special_tokens) def __len__(self): return len(self.encoder) + len(self.special_tokens) def set_special_tokens(self, special_tokens): """ Add a list of additional tokens to the encoder. The additional tokens are indexed starting from the last index of the current vocabulary in the order of the `special_tokens` list. """ if not special_tokens: self.special_tokens = {} self.special_tokens_decoder = {} return self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens)) self.special_tokens_decoder = { v: k for k, v in self.special_tokens.items() } logger.info("Special tokens {}".format(self.special_tokens)) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min( pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def tokenize(self, text): """ Tokenize a string. """ bpe_tokens = [] re = try_import("regex") for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend( bpe_token for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def convert_tokens_to_ids(self, tokens): """ Converts a sequence of tokens into ids using the vocab. """ ids = [] if isinstance(tokens, str): if tokens in self.special_tokens: return self.special_tokens[tokens] else: return self.encoder.get(tokens, 0) for token in tokens: if token in self.special_tokens: ids.append(self.special_tokens[token]) else: ids.append(self.encoder.get(token, 0)) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this OpenAI GPT model ({} > {}). Running this" " sequence through the model will result in indexing errors". format(len(ids), self.max_len)) return ids def convert_ids_to_tokens(self, ids, skip_special_tokens=False): tokens = [] for i in ids: if i in self.special_tokens_decoder: if not skip_special_tokens: tokens.append(self.special_tokens_decoder[i]) else: tokens.append(self.decoder[i]) return tokens def encode(self, text, fn=None): processed_text = text if fn is not None: processed_text = fn(text) ids = self.convert_tokens_to_ids(self.tokenize(processed_text)) return ids def decode(self, tokens): # TODO text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode( 'utf-8', errors=self.errors) return text