# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for parsing PTB text files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import sys import numpy as np Py3 = sys.version_info[0] == 3 def _read_words(filename): data = [] with open(filename, "r") as f: return f.read().decode("utf-8").replace("\n", "").split() def _build_vocab(filename): data = _read_words(filename) counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) print("vocab word num", len(words)) word_to_id = dict(zip(words, range(len(words)))) return word_to_id def _file_to_word_ids(filename, word_to_id): data = _read_words(filename) return [word_to_id[word] for word in data if word in word_to_id] def ptb_raw_data(data_path=None): """Load PTB raw data from data directory "data_path". Reads PTB text files, converts strings to integer ids, and performs mini-batching of the inputs. The PTB dataset comes from Tomas Mikolov's webpage: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz Args: data_path: string path to the directory where simple-examples.tgz has been extracted. Returns: tuple (train_data, valid_data, test_data, vocabulary) where each of the data objects can be passed to PTBIterator. """ train_path = os.path.join(data_path, "ptb.train.txt") #train_path = os.path.join(data_path, "train.fake") valid_path = os.path.join(data_path, "ptb.valid.txt") test_path = os.path.join(data_path, "ptb.test.txt") word_to_id = _build_vocab(train_path) train_data = _file_to_word_ids(train_path, word_to_id) valid_data = _file_to_word_ids(valid_path, word_to_id) test_data = _file_to_word_ids(test_path, word_to_id) vocabulary = len(word_to_id) return train_data, valid_data, test_data, vocabulary def get_data_iter(raw_data, batch_size, num_steps): data_len = len(raw_data) raw_data = np.asarray(raw_data, dtype="int64") #print( "raw", raw_data[:20] ) batch_len = data_len // batch_size data = raw_data[0:batch_size * batch_len].reshape((batch_size, batch_len)) #h = data.reshape( (-1)) #print( "h", h[:20]) epoch_size = (batch_len - 1) // num_steps for i in range(epoch_size): start = i * num_steps #print( i * num_steps ) x = np.copy(data[:, i * num_steps:(i + 1) * num_steps]) y = np.copy(data[:, i * num_steps + 1:(i + 1) * num_steps + 1]) yield (x, y)