#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import math import random import functools import numpy as np import cv2 import paddle from paddle import fluid from utils.autoaugment import ImageNetPolicy from PIL import Image policy = None random.seed(0) np.random.seed(0) def rotate_image(img): """rotate image Args: img: image data Returns: rotated image data """ (h, w) = img.shape[:2] center = (w / 2, h / 2) angle = np.random.randint(-10, 11) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(img, M, (w, h)) return rotated def random_crop(img, size, settings, scale=None, ratio=None, interpolation=None): """random crop image Args: img: image data size: crop size settings: arguments scale: scale parameter ratio: ratio parameter Returns: random cropped image data """ lower_scale = settings.lower_scale lower_ratio = settings.lower_ratio upper_ratio = settings.upper_ratio scale = [lower_scale, 1.0] if scale is None else scale ratio = [lower_ratio, upper_ratio] if ratio is None else ratio aspect_ratio = math.sqrt(np.random.uniform(*ratio)) w = 1. * aspect_ratio h = 1. / aspect_ratio bound = min((float(img.shape[0]) / img.shape[1]) / (h**2), (float(img.shape[1]) / img.shape[0]) / (w**2)) scale_max = min(scale[1], bound) scale_min = min(scale[0], bound) target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min, scale_max) target_size = math.sqrt(target_area) w = int(target_size * w) h = int(target_size * h) i = np.random.randint(0, img.shape[0] - h + 1) j = np.random.randint(0, img.shape[1] - w + 1) img = img[i:i + h, j:j + w, :] if interpolation: resized = cv2.resize(img, (size, size), interpolation=interpolation) else: resized = cv2.resize(img, (size, size)) return resized #NOTE:(2019/08/08) distort color func is not implemented def distort_color(img): """distort image color Args: img: image data Returns: distorted color image data """ return img def resize_short(img, target_size, interpolation=None): """resize image Args: img: image data target_size: resize short target size interpolation: interpolation mode Returns: resized image data """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) if interpolation: resized = cv2.resize( img, (resized_width, resized_height), interpolation=interpolation) else: resized = cv2.resize(img, (resized_width, resized_height)) return resized def crop_image(img, target_size, center): """crop image Args: img: images data target_size: crop target size center: crop mode Returns: img: cropped image data """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def create_mixup_reader(settings, rd): """ """ class context: tmp_mix = [] tmp_l1 = [] tmp_l2 = [] tmp_lam = [] alpha = settings.mixup_alpha def fetch_data(): for item in rd(): yield item def mixup_data(): for data_list in fetch_data(): if alpha > 0.: lam = np.random.beta(alpha, alpha) else: lam = 1. l1 = np.array(data_list) l2 = np.random.permutation(l1) mixed_l = [ l1[i][0] * lam + (1 - lam) * l2[i][0] for i in range(len(l1)) ] yield (mixed_l, l1, l2, lam) def mixup_reader(): for context.tmp_mix, context.tmp_l1, context.tmp_l2, context.tmp_lam in mixup_data( ): for i in range(len(context.tmp_mix)): mixed_l = context.tmp_mix[i] l1 = context.tmp_l1[i] l2 = context.tmp_l2[i] lam = context.tmp_lam yield (mixed_l, int(l1[1]), int(l2[1]), float(lam)) return mixup_reader def process_image(sample, settings, mode, color_jitter, rotate): """ process_image """ mean = settings.image_mean std = settings.image_std crop_size = settings.image_shape[1] img_path = sample[0] img = cv2.imread(img_path) if mode == 'train': if rotate: img = rotate_image(img) if crop_size > 0: img = random_crop( img, crop_size, settings, interpolation=settings.interpolation) if color_jitter: img = distort_color(img) if np.random.randint(0, 2) == 1: img = img[:, ::-1, :] else: if crop_size > 0: target_size = settings.resize_short_size img = resize_short( img, target_size, interpolation=settings.interpolation) img = crop_image(img, target_size=crop_size, center=True) img = img[:, :, ::-1] if 'use_aa' in settings and settings.use_aa and mode == 'train': img = np.ascontiguousarray(img) img = Image.fromarray(img) img = policy(img) img = np.asarray(img) img = img.astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std if mode == 'train' or mode == 'val': return (img, sample[1]) elif mode == 'test': return (img, ) def process_batch_data(input_data, settings, mode, color_jitter, rotate): batch_data = [] for sample in input_data: if os.path.isfile(sample[0]): batch_data.append( process_image(sample, settings, mode, color_jitter, rotate)) else: print("File not exist : %s" % sample[0]) return batch_data class ImageNetReader: def __init__(self, seed=None): self.shuffle_seed = seed def set_shuffle_seed(self, seed): assert isinstance(seed, int), "shuffle seed must be int" self.shuffle_seed = seed def _reader_creator(self, settings, file_list, mode, shuffle=False, color_jitter=False, rotate=False, data_dir=None): num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) if mode == 'test': batch_size = 1 else: if settings.use_gpu: batch_size = settings.batch_size // paddle.fluid.core.get_cuda_device_count( ) else: batch_size = settings.batch_size // int( os.environ.get('CPU_NUM', 1)) def reader(): def read_file_list(): with open(file_list) as flist: full_lines = [line.strip() for line in flist] if mode != "test" and len(full_lines) < settings.batch_size: print( "Warning: The number of the whole data ({}) is smaller than the batch_size ({}), and drop_last is turnning on, so nothing will feed in program, Terminated now. Please reset batch_size to a smaller number or feed more data!". format(len(full_lines), settings.batch_size)) os._exit(1) if num_trainers > 1 and mode == "train": assert self.shuffle_seed is not None, "multiprocess train, shuffle seed must be set!" np.random.RandomState(self.shuffle_seed).shuffle( full_lines) elif shuffle: if not settings.enable_ce or settings.same_feed: np.random.shuffle(full_lines) batch_data = [] if settings.same_feed: temp_file = full_lines[0] print("Same images({},nums:{}) will feed in the net".format( str(temp_file), settings.same_feed)) full_lines = [] for i in range(settings.same_feed): full_lines.append(temp_file) for line in full_lines: img_path, label = line.split() img_path = os.path.join(data_dir, img_path) batch_data.append([img_path, int(label)]) if len(batch_data) == batch_size: if mode == 'train' or mode == 'val' or mode == 'test': yield batch_data batch_data = [] return read_file_list data_reader = reader() if mode == 'train' and num_trainers > 1: assert self.shuffle_seed is not None, \ "If num_trainers > 1, the shuffle_seed must be set, because " \ "the order of batch data generated by reader " \ "must be the same in the respective processes." data_reader = paddle.fluid.contrib.reader.distributed_batch_reader( data_reader) mapper = functools.partial( process_batch_data, settings=settings, mode=mode, color_jitter=color_jitter, rotate=rotate) return fluid.io.xmap_readers( mapper, data_reader, settings.reader_thread, settings.reader_buf_size, order=False) def train(self, settings): """Create a reader for trainning Args: settings: arguments Returns: train reader """ file_list = os.path.join(settings.data_dir, 'train_list.txt') assert os.path.isfile( file_list), "{} doesn't exist, please check data list path".format( file_list) if 'use_aa' in settings and settings.use_aa: global policy policy = ImageNetPolicy() reader = self._reader_creator( settings, file_list, 'train', shuffle=True, color_jitter=False, rotate=False, data_dir=settings.data_dir) if settings.use_mixup == True: reader = create_mixup_reader(settings, reader) reader = fluid.io.batch( reader, batch_size=int(settings.batch_size / paddle.fluid.core.get_cuda_device_count()), drop_last=True) return reader def val(self, settings): """Create a reader for eval Args: settings: arguments Returns: eval reader """ file_list = os.path.join(settings.data_dir, 'val_list.txt') assert os.path.isfile( file_list), "{} doesn't exist, please check data list path".format( file_list) return self._reader_creator( settings, file_list, 'val', shuffle=False, data_dir=settings.data_dir) def test(self, settings): """Create a reader for testing Args: settings: arguments Returns: test reader """ file_list = os.path.join(settings.data_dir, 'val_list.txt') assert os.path.isfile( file_list), "{} doesn't exist, please check data list path".format( file_list) return self._reader_creator( settings, file_list, 'test', shuffle=False, data_dir=settings.data_dir)