{ "cells": [ { "cell_type": "markdown", "id": "6e8592db", "metadata": {}, "source": [ "# Cross-Encoder for Quora Duplicate Questions Detection\n", "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n" ] }, { "cell_type": "markdown", "id": "c3be9ab9", "metadata": {}, "source": [ "## Training Data\n", "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n" ] }, { "cell_type": "markdown", "id": "3f2d2712", "metadata": {}, "source": [ "## Usage and Performance\n" ] }, { "cell_type": "markdown", "id": "0127bf3d", "metadata": {}, "source": [ "Pre-trained models can be used like this:\n" ] }, { "cell_type": "code", "execution_count": null, "id": "e6968e7e", "metadata": {}, "outputs": [], "source": [ "!pip install --upgrade paddlenlp" ] }, { "cell_type": "code", "execution_count": null, "id": "39e99053", "metadata": {}, "outputs": [], "source": [ "import paddle\n", "from paddlenlp.transformers import AutoModel\n", "\n", "model = AutoModel.from_pretrained(\"cross-encoder/stsb-TinyBERT-L-4\")\n", "input_ids = paddle.randint(100, 200, shape=[1, 20])\n", "print(model(input_ids))" ] }, { "cell_type": "markdown", "id": "35446f31", "metadata": {}, "source": [ "You can use this model also without sentence_transformers and by just using ``AutoModel`` class\n", "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }