{ "cells": [ { "cell_type": "markdown", "id": "7a8a1587", "metadata": {}, "source": [ "# bert-base-spanish-wwm-cased-xnli\n" ] }, { "cell_type": "markdown", "id": "210c8e3a", "metadata": {}, "source": [ "## Model description\n" ] }, { "cell_type": "markdown", "id": "fe16ef03", "metadata": {}, "source": [ "This model is a fine-tuned version of the spanish BERT model with the Spanish portion of the XNLI dataset.\n" ] }, { "cell_type": "markdown", "id": "b23d27b0", "metadata": {}, "source": [ "## How to use\n" ] }, { "cell_type": "code", "execution_count": null, "id": "37e5b840", "metadata": {}, "outputs": [], "source": [ "!pip install --upgrade paddlenlp" ] }, { "cell_type": "code", "execution_count": null, "id": "117b1e15", "metadata": {}, "outputs": [], "source": [ "import paddle\n", "from paddlenlp.transformers import AutoModel\n", "\n", "model = AutoModel.from_pretrained(\"Recognai/bert-base-spanish-wwm-cased-xnli\")\n", "input_ids = paddle.randint(100, 200, shape=[1, 20])\n", "print(model(input_ids))" ] }, { "cell_type": "markdown", "id": "65669489", "metadata": {}, "source": [ "## Eval results\n", "\n", "Accuracy for the test set:\n", "\n", "| | XNLI-es |\n", "|-----------------------------|---------|\n", "|bert-base-spanish-wwm-cased-xnli | 79.9% |\n", "\n", "> The model introduction and model weights originate from https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli and were converted to PaddlePaddle format for ease of use in PaddleNLP." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }