{ "cells": [ { "cell_type": "markdown", "id": "18d5c43e", "metadata": {}, "source": [ "# Mengzi-BERT base fin model (Chinese)\n", "Continue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n" ] }, { "cell_type": "markdown", "id": "9aa78f76", "metadata": {}, "source": [ "[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)\n" ] }, { "cell_type": "markdown", "id": "12bbac99", "metadata": {}, "source": [ "## Usage\n" ] }, { "cell_type": "code", "execution_count": null, "id": "3b18fe48", "metadata": {}, "outputs": [], "source": [ "!pip install --upgrade paddlenlp" ] }, { "cell_type": "code", "execution_count": null, "id": "1bb0e345", "metadata": {}, "outputs": [], "source": [ "import paddle\n", "from paddlenlp.transformers import AutoModel\n", "\n", "model = AutoModel.from_pretrained(\"Langboat/mengzi-bert-base-fin\")\n", "input_ids = paddle.randint(100, 200, shape=[1, 20])\n", "print(model(input_ids))" ] }, { "cell_type": "markdown", "id": "a8d785f4", "metadata": {}, "source": [ "```\n", "@misc{zhang2021mengzi,\n", "title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},\n", "author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},\n", "year={2021},\n", "eprint={2110.06696},\n", "archivePrefix={arXiv},\n", "primaryClass={cs.CL}\n", "}\n", "```" ] }, { "cell_type": "markdown", "id": "ceb1547c", "metadata": {}, "source": [ "> 此模型介绍及权重来源于[https://huggingface.co/Langboat/mengzi-bert-base-fin](https://huggingface.co/Langboat/mengzi-bert-base-fin),并转换为飞桨模型格式。\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }