import logging import argparse import paddle.v2 as paddle import gzip from model import Model from data_provider import get_file_list, AsciiDic, ImageDataset parser = argparse.ArgumentParser(description="PaddlePaddle CTC example") parser.add_argument( '--image_shape', type=str, required=True, help="image's shape, format is like '173,46'") parser.add_argument( '--train_file_list', type=str, required=True, help='path of the file which contains path list of train image files') parser.add_argument( '--test_file_list', type=str, required=True, help='path of the file which contains path list of test image files') parser.add_argument( '--batch_size', type=int, default=5, help='size of a mini-batch') parser.add_argument( '--model_output_prefix', type=str, default='model.ctc', help='prefix of path for model to store (default: ./model.ctc)') parser.add_argument( '--trainer_count', type=int, default=4, help='number of training threads') parser.add_argument( '--save_period_by_batch', type=int, default=50, help='save model to disk every N batches') parser.add_argument( '--num_passes', type=int, default=1, help='number of passes to train (default: 1)') args = parser.parse_args() image_shape = tuple(map(int, args.image_shape.split(','))) print 'image_shape', image_shape print 'batch_size', args.batch_size print 'train_file_list', args.train_file_list print 'test_file_list', args.test_file_list train_generator = get_file_list(args.train_file_list) test_generator = get_file_list(args.test_file_list) infer_generator = None dataset = ImageDataset( train_generator, test_generator, infer_generator, fixed_shape=image_shape, is_infer=False) paddle.init(use_gpu=True, trainer_count=args.trainer_count) model = Model(AsciiDic().size(), image_shape, is_infer=False) params = paddle.parameters.create(model.cost) optimizer = paddle.optimizer.Momentum(momentum=0) trainer = paddle.trainer.SGD( cost=model.cost, parameters=params, update_equation=optimizer) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 100 == 0: print "Pass %d, batch %d, Samples %d, Cost %f" % ( event.pass_id, event.batch_id, event.batch_id * args.batch_size, event.cost) if event.batch_id > 0 and event.batch_id % args.save_period_by_batch == 0: result = trainer.test( reader=paddle.batch(dataset.test, batch_size=10), feeding={'image': 0, 'label': 1}) print "Test %d-%d, Cost %f " % (event.pass_id, event.batch_id, result.cost) path = "{}-pass-{}-batch-{}-test-{}.tar.gz".format( args.model_output_prefix, event.pass_id, event.batch_id, result.cost) with gzip.open(path, 'w') as f: params.to_tar(f) trainer.train( reader=paddle.batch( paddle.reader.shuffle(dataset.train, buf_size=500), batch_size=args.batch_size), feeding={'image': 0, 'label': 1}, event_handler=event_handler, num_passes=args.num_passes)