class Dataset: def _reader_creator(self, path, is_infer): def reader(): with open(path, 'r') as f: for line in f: features = line.rstrip('\n').split('\t') dense_feature = map(float, features[0].split(',')) sparse_feature = map(lambda x: [int(x)], features[1].split(',')) if not is_infer: label = [float(features[2])] yield [dense_feature ] + sparse_feature + [label] else: yield [dense_feature] + sparse_feature return reader def train(self, path): return self._reader_creator(path, False) def test(self, path): return self._reader_creator(path, False) def infer(self, path): return self._reader_creator(path, True) feeding = { 'dense_input': 0, 'sparse_input': 1, 'C1': 2, 'C2': 3, 'C3': 4, 'C4': 5, 'C5': 6, 'C6': 7, 'C7': 8, 'C8': 9, 'C9': 10, 'C10': 11, 'C11': 12, 'C12': 13, 'C13': 14, 'C14': 15, 'C15': 16, 'C16': 17, 'C17': 18, 'C18': 19, 'C19': 20, 'C20': 21, 'C21': 22, 'C22': 23, 'C23': 24, 'C24': 25, 'C25': 26, 'C26': 27, 'label': 28 }