# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import time import logging import argparse import ast import numpy as np import paddle.fluid as fluid from utils.config_utils import * import models from reader import get_reader from metrics import get_metrics from utils.utility import check_cuda logging.root.handlers = [] FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='AttentionCluster', help='name of model to train.') parser.add_argument( '--config', type=str, default='configs/attention_cluster.txt', help='path to config file of model') parser.add_argument( '--batch_size', type=int, default=None, help='test batch size. None to use config file setting.') parser.add_argument( '--use_gpu', type=ast.literal_eval, default=True, help='default use gpu.') parser.add_argument( '--weights', type=str, default=None, help='weight path, None to automatically download weights provided by Paddle.' ) parser.add_argument( '--save_dir', type=str, default=os.path.join('data', 'evaluate_results'), help='output dir path, default to use ./data/evaluate_results') parser.add_argument( '--log_interval', type=int, default=1, help='mini-batch interval to log.') args = parser.parse_args() return args def test(args): # parse config config = parse_config(args.config) test_config = merge_configs(config, 'test', vars(args)) print_configs(test_config, "Test") # build model test_model = models.get_model(args.model_name, test_config, mode='test') test_model.build_input(use_pyreader=False) test_model.build_model() test_feeds = test_model.feeds() test_fetch_list = test_model.fetches() place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) if args.weights: assert os.path.exists( args.weights), "Given weight dir {} not exist.".format(args.weights) weights = args.weights or test_model.get_weights() logger.info('load test weights from {}'.format(weights)) test_model.load_test_weights(exe, weights, fluid.default_main_program(), place) # get reader and metrics test_reader = get_reader(args.model_name.upper(), 'test', test_config) test_metrics = get_metrics(args.model_name.upper(), 'test', test_config) test_feeder = fluid.DataFeeder(place=place, feed_list=test_feeds) epoch_period = [] for test_iter, data in enumerate(test_reader()): cur_time = time.time() test_outs = exe.run(fetch_list=test_fetch_list, feed=test_feeder.feed(data)) period = time.time() - cur_time epoch_period.append(period) test_metrics.accumulate(test_outs) # metric here if args.log_interval > 0 and test_iter % args.log_interval == 0: info_str = '[EVAL] Batch {}'.format(test_iter) test_metrics.calculate_and_log_out(test_outs, info_str) if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) test_metrics.finalize_and_log_out("[EVAL] eval finished. ", args.save_dir) if __name__ == "__main__": args = parse_args() # check whether the installed paddle is compiled with GPU check_cuda(args.use_gpu) logger.info(args) test(args)